FORMATION AND EVOLUTION OF SUB STRUCTURES AROUND DWARF GALAXY-SIZED HALOS

Kyungwon Chun School of Space Research, Kyung Hee University

Jihye Shin Korea Institute for Advanced Study Sungsoo S. Kim School of Space Research, Kyung Hee University

Introduction

The stellar satellite structures

- Globular Cluster (GC)
- Ultra Compact Dwarf (UCD)
- Ultra Faint Dwarf (UFD)
- dwarf spheroidal (dSph)

They have similar luminosity, but, their other properties are different (e.g. dark matter mass fraction, size, density, metallicity, etc..).

Cosmological simulations

- Target : Three different isolated dwarf galaxies (~ $10^{10}M_{\odot}$) and their sub halos
- Method : Cosmological hydrodynamic zoom-in simulation

Introduction

<u>Code</u>

- We modified GADGET-3 to include realistic baryonic physics (Shin et al 2014).
 - We do not use the multi-phase model to describe T<10⁴K structures.
 - Low temperature cooling is essential to trace the evolution of interesting objects ($10^4 \sim 10^{10} \text{ M}_{\odot}$).

Radiative Heating & Cooling

• Radiative heating and cooling rates are measured using CLOUDY 90 (Ferland et al. 1998).

- Cooling: Compton cooling, inverse Compton cooling, and atomic/molecular cooling
- Heating: Compton heating, inverse Compton heating, and background UV heating
- Reionization is simultaneously occurred in the whole universe at $z_{re} = 8.9$ (Haardt & Madau 1996).
- UV Shielding is considered at dense gas cloud $(n_H \ge 0.014 cm^{-3})$ (Sawala et al. 2010).

Star formation

- Star formation criteria
 - (1) $n_H > 100 cm^{-3}$ (2) T < 10,000 K (3) $\nabla \cdot v < 0$
- Star formation rate
 - Star particles are formed at a rate of the local Schmidt law.

$$-\frac{d\rho_*}{dt} = C_* \frac{\rho_{gas}}{t_{dyn}}$$

- C_* is the star formation efficiency.
- Star formation probability

$$P_{SF} = \frac{m_{gas}}{m_*} \left[1 - \exp\left(-C_* \frac{dt}{t_{dyn}}\right) \right]$$
 (exponential law)

- m_* is one third of the original gas particle mass.
- Single stellar population
 - Kroupa Initial Mass Function (Kroupa 2001).
 - Single stellar population (same age and metallicity.)

Supernova feedback

- SN_{II} explosion
 - Massive stars(> $8M_{\odot}$) explode as <u>Type II SNe</u>.
 - Energy of a supernova explosion is <u>10⁵¹erg</u>.
 - Stellar evolution model (Hurley, Pols, & Tout 2000).
 - Metal enrichment of $SN_{\rm II}$ (Woosley & Weaver 1995).
 - Energy, mass, and metal are distributed using Spline kernel.
- SN_{II} probability (Okamoto, Nemmen, and Bower 2008)

$$P_{SN_{\rm II}}(Z) = \frac{\int_{t_{SSP}}^{t_{SSP}+dt} r_{SN_{\rm II}}(t',Z)dt'}{\int_{t_{SSP}}^{t_8} r_{SN_{\rm II}}(t',Z)dt'}$$

Current work

The satellite structures

- Globular Cluster (GC)
- Ultra Compact Dwarf (UCD)
- Ultra Faint Dwarf (UFD)
- dwarf spheroidal (dSph)

They have similar luminosity, but, different in other properties (e.g. dark matter mass fraction, size, density, metallicity, etc..).

Cosmological simulations

- Target : Three different isolated dwarf galaxies (~ $10^{10}M_{\odot}$) and their sub halos
- Method : Cosmological hydrodynamic zoom-in simulation

8h ⁻¹Mpc

Simulation

Initial Condition

- **MUSIC** (Hahn & Abel 2011)
- $z_{init} = 49$
- Cosmological parameters: $\Omega_m=0.3,~\Omega_{\Lambda}=0.7,~\Omega_{b}=0.048,$ and h=0.68

Resolution

- Particles numbers: $N_{DM} = N_{Gas} = 1.7 \times 10^7$
- Particles mass: DM: $4.17 \times 10^3 M_{\odot}$, Gas: $7.92 \times 10^2 M_{\odot}$
 - \rightarrow The satellite structures can be resolved using at least 100 particles.
- Gravitational softening: Maximum physical softening length: ~10pc

Halo finding

• Amiga Halo Finder (Knollmann & Knebe 2009)

Properties of main halos

Mass growth of mini halos

Mini halos

- Candidates for stellar satellite structures (e.g. GC, UCD, UFD and dSph).
 - Condition 1: The halos form outside of the main halos.
 - Condition 2: $10^4 M_{\odot} < M_{baryon (infall)}$

 \rightarrow Number of candidates: 93

r: Spearman's rank correlation coefficient ($-1 \leq r_s \leq 1)$

Mass growth of mini halos

the surrounding environments of the mini halos.

N_{merger}: The total number of merging with other halos before falling into the main halo

Stars of mini halos

 $N_{merger}(z>z_{re})$: The total number of merging before cosmic reionization

Stars of mini halos

Most halos generate stars by accreted gas during dark age.

M_s(ancient gas): Stellar mass form by accreted gas during dark age

Properties of mini halos in the main halo

Direction to the galactic center

- Massive halos having star components
- Proper motion toward galactic center (from dense region)
- Active DM loss (by strong tidal field) → Star fraction ↑ (by self-gravity of stars)

Properties of mini halos in the main halo

Direction to the galactic center

- Low mass halos without star components
- Random proper motion (from field or early infall)
- Destroyed by tidal force

Comparison with observation

- Surviving halos at z~1
 - \rightarrow candidates of UFDs or dSphs
- The objects formed in the main halo
 → candidates of red (metal-rich) GCs

Comparison with observation

- Surviving halos at z~1
 - \rightarrow candidates of UFDs or dSphs
- The objects formed in the main halo
 → candidates of red (metal-rich) GCs

Summary & Future works

- The main factors determining the properties of mini halos
 - Total mass: surrounding environments
 - Star contents: the accreted gas during dark age
- The halos from dense region
 - Massive halos with star components
 - Halos reach the galactic center despite of strong tidal force.
- The halos from field region
 - Low mass halos without star components.
 - Halos stay in high $r_{\textrm{min}}/$ $r_{\textrm{vir}}$ and are destroyed by tidal force.

- We are going to investigate the evolution of gas cloud in the mini halos with radiative transfer.
 - Our results are used as initial & boundary conditions.