The Multi-Phase Model

Simulations Conclusion

Chemo-Dynamical Galaxy Evolution

Matthias Kühtreiber ¹ Gerhard Hensler, Rainer Spurzem, Peter Berczik, Lei Liu, The Silkroad-Project Team

¹Department of Astrophysics, University of Vienna

December 20, 2016

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Outline	Introduction 00000	The Multi-Phase Model	Simulations 000000000000	Conclusion
Outline				universität wien

- Dwarf Galaxies
- Interstellar Medium
- 2 The Multi-Phase Model
 - Hot/Warm Gas
 - Cold Clouds
 - Stellar Populations
 - Interaction Processes
- 3 Simulation
 - Initial Conditions
 - Results of Test Runs
- 4 Conclusions
- 5 Discussion

Matthias Kühtreiber

Introduction

The Multi-Phase Model

Simulations Conclusion

wiversität

Dwarf Galaxies: Definition

Properties

- Low-luminosity: $M_v \ge 10^{-17}$ mag
- Low-mass: $10^7 10^{10} M_{\odot}$
- Small in size: a few kpc
- Often low surface brightness, so they are hard to find

There are different types of dwarf galaxies:

- Dwarf irregulars (dlrr): Gas-rich, active ongoing star formation but relatively low surface brightness;
- Dwarf ellipticals (dEs): Gas-poor, old stellar population, many dEs show nuclei and are structurally different from luminous elliptical galaxies;
- Dwarf spheroidals (dSph): Gas-poor, extremely low luminosity;

Leo I: dSph

E 996

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Dwarf Galaxies

Absolute magnitude M_v vs. central surface brightness μ_v :

- Local group dwarf galaxies
 - Blue compact dwarf galaxies
- 🛆 Milky Way, M31, M33, LMC
 - dEs and dIrrs follow the same relation, even to the very faint end.
 - But clearly distinct from ultra compact dwarfs (UCDs), globular clusters (GCs) and Hubble type galaxies

Tolstoy et al. (2009); reproduced by Liu Lei

Why are d	dwarf galaxies	interesting?		wiversität
Outline	Introduction 00●00	The Multi-Phase Model	Simulations 00000000000000	Conclusion

Dwarf galaxies

- are the most common class of galaxies.
- are relatively simple systems, not merger products.
- are currently being "absorbed" by larger galaxies (hierarchical formation).
- are extremely sensitive to their internal evolution and their environmental influences.

wien

Metallicity

Introduction 00000

The Multi-Phase Model

Simulations Conclusion

- DGs have usually low metallicities
- DGs follow a metallicity luminosity relation but dlrrs and dEs/dSphs follow different tracks
- Galactic outflows might be one cause for low metallicities
- Observations show different abundances for neutral/ionized gas
- Multi-Phase treatment for a more realistic chemo-dynamical evolution!

Figure 1. The dwarf irregular galaxy Large Magellanic Cloud (LMC) at different wavelengths: a) optical image showing stars and luminous interstellar gas; b) $H\alpha$ image pronouncing star forming regions; c) X-ray here traces hot supernova expelled gas; d) large-scale neutral hydrogen gas structures in the 21 cm radio line. Please note the different scales of the four images.

< (T) > <

Chemo-Dynamical Galaxy Evolution

Matthias Kühtreiber

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
	00000			

The Interstellar Medium

For heating-cooling balance 3 stable phases can form.

 $n^2 \Lambda(T) = nG$

$$\frac{\Lambda(T)}{T} = \frac{G}{nT}$$

- Cold medium: molecular clouds; $T \sim 100$ K; $n \sim 10^2 10^6$ cm⁻³
- hot gas: $T \sim 10^6$ K; $n \sim 10^{-1} 10^{-3}$ cm⁻³

Credit: Günter Hasinger

Chemo-Dynamical Galaxy Evolution

Matthias Kühtreiber

Introduction

The Multi-Phase Model

Simulations Conclusion

universität wien

The Multi-Phase Model

"Sticky" particle method by Theis & Hensler (1993)

Hot/Warm Component

- SPH particles
- Can condensate ⇒ cold clouds
- Receive feedback from SNII and SNIa

Cold Clouds

- N-body particles
- Can coagulate due to collisions
- Can form stars and fragment
- Can evaporate ⇒ hot/warm component
- Receive stellar wind and PNe feedback

The hot/warm and cold component can exchange mass, momentum and energy due to:

- condensation
- evaporation
- drag force
 Matthias Kühtreiber

Evaporation Drag Force Condensation Gravity Star formation Cold Coagulation Star Fragmentation FB: SW + PN -∢ ≣⇒

Hot/warm

(SPH)

Department of Astrophysics, University of Vienna

Outline	Introduction 00000	The Multi-Phase Model	Simulations 000000000000	Conclusion
Hot Gas			6	wiversität

- The fluid is divided into a set of discrete elements (particles)
- A smoothing length h is applied to particles
- Properties are smoothed between neighbouring particles via a kernel function $W(\vec{r_{ij}},h)$

Outline Introduction The Multi-Phase Model Simulations

Field F is known at some points \vec{r} : $F = F(\vec{r})$ The smoothed interpolated version of F is defined as

$$F_s(\vec{r}) = \int F(\vec{r}) W(\vec{r} - \vec{r'}, h) d\vec{r'}$$

Can be approximated by a sum:

$$F_s(\vec{r}) \simeq \sum_j \frac{m_j}{\rho_j} F(\vec{r_j}) W(\vec{r} - \vec{r_j}, h)$$

$$\rho_i = \sum_j m_j W(\vec{r_i} - \vec{r_j}, h)$$

Department of Astrophysics, University of Vienna

Conclusion

Matthias Kühtreiber

Smoothed	Particle	Hydrodynamics	(SPH)	<u>miversität</u>
Smootnea	Particle	H ydrodynamics	(SPH)	Wien

Smoothed Particle Hydrodynamics (SPH)

Equation of motion and internal energy:

$$\frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t} = -\sum_j m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} + \Pi_{ij}\right) \nabla_i W_{ij}$$

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \frac{1}{2} \sum_j m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} + \Pi_{ij} \right) (\mathbf{v}_i - \mathbf{v}_j) \nabla_i W_{ij}$$

$$\begin{array}{l} P_{\cdots} \text{ pressure} = (\gamma-1) \cdot \rho_i \cdot u_i \\ \Pi_{ij\cdots} \text{ artificial viscosity} \\ c_{ij\cdots} \text{ mean sound speed} = (c_i + c_j)/2 \\ \epsilon = 0.01 \\ f_{ij} = (f_i + f_j)/2 \end{array}$$

Artificial viscosity: $\Pi_{ij} = \begin{cases} \frac{-\alpha c_{ij}\mu_{ij} + \beta \mu_{ij}^2}{\rho_{ij}} & \mathbf{v}_{ij} \cdot \mathbf{r}_{ij} < 0, \\ 0 & \text{else} \end{cases}$

$$\mu_{ij} = \frac{h_{ij}(\mathbf{v}_i - \mathbf{v}_j) \cdot (\mathbf{r}_i - \mathbf{r}_j)}{\mathbf{r}_{ij}^2 + \epsilon h_{ij}^2} f_{ij}$$

$$f_i = \frac{|(\nabla \cdot \mathbf{v})_i|}{|(\nabla \cdot \mathbf{v})_i| + |(\nabla \times \mathbf{v})_i| + \epsilon^2 c_i / h_i}$$

Department of Astrophysics, University of Vienna

<ロ> <同> <同> < 回> < 回>

Matthias Kühtreiber

)utline	~			
	• •	 + 1	5	
				-

Cold Clouds

ntroduction

The Multi-Phase Model

Simulations Conclusion

Size of the cloud is calculated by mass-radius relation Larson (1981), Rivolo (1988):

$$h_{\rm cl} = 50 \sqrt{\frac{m_{\rm cl}}{10^6 \,\,{\rm M}_\odot}} ({\rm pc})$$

Figure 5. Mass-radius relation for 273 giant molecular clouds from the catalog of Solomon et al. (1997). The solid circles are calibrator clouds with known distances. The fit line is given by $M_{YT} = 330 \ 3^{-10} M_{\odot}$.

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Cold Clouds

Introduction

The Multi-Phase Model

Simulations Conclusion

universität wien

Alternative: Pressure equilibrium with surrounding intercloud medium

$$h_{\rm cl} = \left(\frac{3n_{mol}R_{gas}T}{4\pi P}\right)^{\frac{1}{3}}$$
$$P_i = \sum_j (\gamma - 1)m_j u_j W_{ij}$$

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

The Multi-Phase Model

Simulations Conclusion

universität wien

Coagulation

Theis & Hensler (1993)

Find clouds j around target cloud i within radius $r_{s,p}$

Typical distance travelled within next timestep

$$r_{s,p} = 2\Delta t \sqrt{2} v_{\mathrm{vir},p} = \Delta t \sqrt{8/3\phi_p}$$

 $\Delta t...$ next timestep; $\phi_p...$ gravity potential on position of particle p 3 Check critical spin of compound object

$$m_1 m_2 / (m_1 + m_2) \cdot b \ v_{1,2} \le c_{ang} L_{max}$$

$$L_{\rm max} = \int \rho(\mathbf{r}) v_{\rm circ} \ r \sin \theta \ \mathrm{d}\mathbf{r} = \frac{8}{21} \cdot \sqrt{Gm_{\rm cl}^3 h_{\rm cl}}.$$

b... impact parameter $c_{\rm ang} = 1 \\ \theta... \text{ angle between rotation axis and position } r$

Colisional cross-section

$$A_{\rm cr} = \eta_{\rm ov}^2 \cdot \pi h_{\rm cl}^2 \cdot \left(1 + \frac{2G(m_1 + m_2)}{\eta_{\rm ov} h_{\rm cl} v_{1,2}^2} \right)$$

$$\eta_{\rm ov} = 0.2;$$

Department of Astrophysics. University of Vienna

Matthias Kühtreiber

The Multi-Phase Model

Simulations Conclusion

Fragmentation

- Triggered by stellar feedback: SW and SNell drive an expanding shell
- The radius r_{sh} and velocity v_{sh} of the shell are determined by:

Expanding Shell

$$r_{\rm sh} = 0.961 \cdot \left(\frac{\dot{E}}{\rho_1}\right)^{0.25} \cdot t^{\ 0.75}$$

$$v_{\rm sh} = 0.736 \cdot \left(\frac{\dot{E}}{\rho_1}\right)^{0.25} \cdot t^{-0.25}$$

 $\rho_1...m_{cl}/h_{cl}^{(3-\alpha)}$; $\alpha...$ determines $\rho(r)$ of a cloud from mass-radius relation follows $\alpha=1$

- When r_{sh} reaches the edge of the cloud, it fragments into 4 smaller pieces.
- \blacksquare The fragments get the velocity of the expanding shell v_{sh} at that time.

Brown et al. (1995)

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

The Multi-Phase Model

Simulations Conclusion

Thermal Conduction

- Analytical formulae by Cowie et al. (1981)
- Leads to evaporation and condensation of clouds
- σ₀ represents the ratio between the electron mean free path λ_k and the cloud size h_{cl}:

Thermal Conduction

$$\sigma_0 = \left(\frac{T_{\rm hot}({\rm K})}{1.54\times 10^7}\right)^2 \ \frac{1}{\Phi \, n_{\rm hot}({\rm cm}^{-3}) \, h_{\rm cl}({\rm pc})}$$

 $T_{\rm hot}\ldots$ Temperature of hot/warm gas; $n_{\rm hot}\ldots$ number density of hot/warm gas; Φ_\ldots Effect of a magnetic field on reducing the mean free path of charged particles (is set to 1);

- If $h_{cl} < \lambda_k \ (\sigma_0 > 1) \Rightarrow$ evaporation occurs
- If $h_{cl} > \lambda_k \Rightarrow$ condensation occurs
- The transition value from evaporation to condensation is set to $\sigma_0 = 0.03$

${\sf Condensation}/{\sf Evaporation}$

$$\begin{aligned} \frac{\mathrm{d}m_{\mathrm{cl}}}{\mathrm{d}t}(\mathrm{kg/s}) &= \\ \left\{ \begin{array}{ll} 0.825 \cdot T_{\mathrm{hot}}^{5/2} h_{\mathrm{cl}} \sigma_0^{-1} & \sigma_0 < 0.03 \\ -27.5 \cdot T_{\mathrm{hot}}^{5/2} h_{\mathrm{cl}} \Phi & 0.03 \le \sigma_0 \le 1 \\ -27.5 \cdot T_{\mathrm{hot}}^{5/2} h_{\mathrm{cl}} \Phi \sigma_0^{-5/8} & \sigma_0 > 1 \end{array} \right. \end{aligned}$$

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Introduction

The Multi-Phase Model

Simulations Conclusion

Thermal Conduction

$$\Delta m_{cl} = \frac{dm_{cl}}{dt} \cdot \Delta t_{CE}; \quad m_{cl}' = m_{cl} + \Delta m_{cl}; \quad m_{hot}' = m_{hot} + \Delta m_{cl};$$

Momentum Exchange

$$M_{hot} \cdot \mathbf{v}_{hot} + m_{cl} \cdot \mathbf{v}_{cl} = m'_{hot} \cdot \mathbf{v}'_{hot} + m'_{cl} \cdot \mathbf{v}'_{cl}$$

$$M'_{hot} = m_{hot} - \Delta m_{cl}$$
$$M'_{cl} = m_{cl} + \Delta m_{cl}$$

If $\Delta m_{cl} > 0:$ condensation If $\Delta m_{cl} < 0:$ evaporation

$$\begin{split} \overline{\text{Temperature Exchange}} \\ \hline \text{Condensation: } T'_{hot} &= T_{hot} \\ (m_{cl} + \Delta m_{cl}) \cdot T'_{cl} &= m_{cl} \cdot T_{cl} + \Delta m_{cl} \cdot T_{hot} \\ T'_{cl} &= \frac{m_{cl} \cdot T_{cl} + \Delta m_{cl} \cdot T_{hot}}{m_{cl} + \Delta m_{cl}} \\ \hline \text{Evaporation: } T'_{cl} &= T_{cl} \\ (m_{hot} - \Delta m_{cl}) \cdot T'_{hot} &= m_{hot} \cdot T_{hot} - \Delta m_{cl} \cdot T_{cl} \\ T'_{hot} &= \frac{m_{hot} \cdot T_{hot} - \Delta m_{cl} \cdot T_{cl}}{m_{hot} - \Delta m_{cl}} \end{split}$$

Department of Astrophysics, University of Vienna

<ロ> <四> <四> <日> <日> <日</p>

Matthias Kühtreiber

Introduction

Cloud Dragging

The Multi-Phase Model

Simulations Conclusion

- - Different dynamics lead to a drag force acting on clouds
 - Analytical formulae by Shu et al. (1972)

Drag Force

$$\mathbf{F}_{\mathrm{D}} = -C_{\mathrm{D}} \cdot \pi h_{\mathrm{cl}}^2 \rho_{\mathrm{hot}} \cdot |\mathbf{v}_{\mathrm{cl}} - \mathbf{v}_{\mathrm{hot}}| \cdot (\mathbf{v}_{\mathrm{cl}} - \mathbf{v}_{\mathrm{hot}}).$$

 $C_{\rm D}$... Ratio between the effective cross section of a cloud and its geometrical one $(\pi h_{\rm cl}^2)$; $\mathbf{v}_{\rm cl} - \mathbf{v}_{\rm hot}$... Relative velocity of the cloud in a homogeneous surrounding hot medium;

▲ 同 ▶ → 三 ▶

Matthias Kühtreiber

Gas Cooling

Introduction

The Multi-Phase Model

Simulations Conclusion

Department of Astrophysics, University of Vienna

▲ 同 ▶ → 三 ▶

Matthias Kühtreiber

Outline	Introduction	The Multi-Phase Model	Conclusion
		000000000000000000000000000000000000000	

Jeans instability criterion can directly be used

• Check if $\lambda_{\rm J} < h_{cl} \Rightarrow$ collapse

$$\lambda_{\rm J} \equiv c_{\rm cl} \sqrt{\frac{\pi}{G\rho_{\rm cl}}}$$

$$\frac{\mathrm{d}\rho_*^{\mathrm{max}}}{\mathrm{d}t} = \frac{M_\mathrm{J}}{\tau_{\mathrm{cl}}^{\mathrm{ff}} V_\mathrm{J}} = \frac{4}{3} \sqrt{\frac{6G}{\pi}} \ \rho_{\mathrm{cl}}^{3/2}$$

$$\tau_{\rm cl}^{\rm ff} \equiv \sqrt{\frac{3\pi}{32G\rho_{\rm cl}}}$$

• $d\rho_*^{max}/dt$ is multiplied with a random number ϵ between 0.01 and 1 because usually not the total mass M_J is turned into stars within a free-fall time τ_{cl}^{fl}

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Single S	Stellar Popula	ations		<i>wiversität</i>
Outline	Introduction 00000	The Multi-Phase Model ○○○○○○○○○○○○○○○	Simulations 000000000000	Conclusion

Initial mass function from Kroupa et al. (1993), with $m_{low} = 0.08 \ M_{\odot}$ and $m_{up} = 100 \ M_{\odot}$

$$\xi(m) = \begin{cases} 0.035m^{-1.3} \text{ if } 0.08 \le m < 0.5, \\ 0.019m^{-2.2} \text{ if } 0.5 \le m < 1.0, \\ 0.019m^{-2.7} \text{ if } 1.0 \le m < 100 \end{cases}$$

Stellar lifetimes from Raiteri et al. (1996):

 $\log t_{\star} = a_0(Z) + a_1(Z) \log M + a_2(Z) (\log M)^2$

 $\begin{aligned} a_0(Z) &= 10.13 + 0.07547 \log Z - 0.008084 (\log Z)^2 \\ a_1(Z) &= -4.424 - 0.7939 \log Z - 0.1187 (\log Z)^2 \end{aligned}$ $a_2(Z) = 1.262 + 0.3385 \log Z + 0.05417 (\log Z)^2$

• High mass stars: $M > 8 M_{\odot}$ Produce stellar winds and end their life as SNeII

- Intermediate mass stars: $0.8 M_{\odot} > M > 8 M_{\odot}$ Undergo PNe or SNela
- Low mass stars: $M < 8 M_{\odot}$ Do not evolve significantly during a Hubble time

Matthias Kühtreiber

wien

Feedback				universität
Dutline	Introduction 00000	The Multi-Phase Model	Simulations	Conclusion

- Stellar particles return mass, energy and chemical elements to surrounding hot and cold particles
- Feedback from SNe is added to the hot phase
- Feedback from SW and PNe is added to the cold phase
- Mass ejecta are calculated from models of Berczik & Petrov (2003)

ie	lds	

- SW & SNII: Portinari et al. (1998)
- PNe: van den Hoek & Groenwegen (1997)
- SNIa: Iwamoto et al. (1999)

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

An ender in some so	
Juume	

The Multi-Phase Model

Simulations Conclusion

Feedback

Matthias Kühtreiber

Department of Astrophysics, University of Vienna

Outline	Introduction 00000	The Multi-Phase Model ○○○○○○○○○○○○○○○	Simulations 000000000000000	Conclusion
Feedback				universität wien

Feedback energy ΔE of a SSP in the time interval [t, t + dt]:

$$\Delta E = \left[\Delta E_{\mathsf{SW}}(t) + \Delta N_{\mathsf{PN}}(t)E_{\mathsf{PN}} + \left(\Delta N_{\mathsf{SNII}}(t)E_{\mathsf{SNII}} + \Delta N_{\mathsf{SNI}}(t)E_{\mathsf{SNI}}\right) \cdot SN_{\mathsf{eff}}\right]m_{\star}$$

$$\begin{split} E_{\mathsf{PN}} &= 10^{47} \mathrm{erg} \\ E_{\mathsf{SNII}} &= 10^{51} \mathrm{erg} \\ E_{\mathsf{SNI}} &= 10^{51} \mathrm{erg} \\ SN_{\mathrm{eff}} &= 0.05 \end{split}$$

Mass transfer of a SSP in the time interval [t, t + dt]:

$$\Delta m(t) = [\Delta m_{PN}(t) + \Delta m_{SNII}(t) + \Delta m_{SNI}(t) + \Delta m_{SW}(t)]m_{\star}$$

11 elements are taken into account: H, He, C, N, O, Ne, Mg, Si, S, Ca, Fe

$$\begin{split} \Delta m_k(t,Z) &= [\Delta m_{k,PN}(t,Z) + \Delta m_{k,SNII}(t,Z) + \\ \Delta m_{k,SNI}(t,Z) + \Delta m_{k,SW}(t,Z)] m_\star \end{split}$$

 $\begin{array}{c|c} N & \dots \text{ number of events} \\ \Delta m_k & \dots \text{ feedback mass for element k} \end{array} \xrightarrow{\qquad m_\star \dots \text{ mass of stellar population}} \Delta m \dots \text{ feedback mass for element k} \xrightarrow{\qquad m_\star \dots \text{ mass of stellar population}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ mass of stellar population}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ mass of stellar population}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for element k}} \overline{\Delta m} \xrightarrow{\qquad m_\star \dots \text{ feedback mass for elemen$

Matthias Kühtreiber

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

э

$$\begin{split} m_{gas} &= m_{gas} + \Delta m(t) * frac \\ m_{k,gas} &= m_{k,gas} + \Delta m_k(t) * frac \end{split}$$

 m_{star} ... mass of stellar population

frac ... feedback fraction one of the neighbouring gas particles receives (e.g. $W(r_{i,j},h)$ or $N_{n,g,b}$)

 Δm_k ... feedback mass for element k

Matthias Kühtreiber

Chemo-Dynamical Galaxy Evolution

 $\Delta m...$ feedback mass

Outline	0				
Juline	()		+ 1	-	~
	${}^{\circ}$	u	u		e

The Multi-Phase Model

Simulations Conclusion

wiversität

Initial Conditions

- Miyamoto-Nagai profile with *a* = 0.2 kpc and *b* = 0.75 kpc
- Hot/warm: $M = 4 \times 10^7 \text{ M}_{\odot}$, $T = 10^6 \text{ K}$
- \blacksquare Cold: $M=1.96\times 10^9~{\rm M}_{\odot}$, $T=10^3~{\rm K}$

$$\Rightarrow M_{\text{gas}} = 2 imes 10^9 \ \text{M}_{\odot}$$

Matthias Kühtreiber

- Burkert profile with $r_0 = 3 \text{ kpc}$ and $\rho_0 = 1.49 \cdot 10^{-24} \text{ g cm}^{-3}$
- $\label{eq:masses} \begin{array}{l} \bullet \ \Rightarrow M_{\text{dm}} = 9.42 \times 10^9 \ \text{M}_{\odot} \\ \text{within 20 kpc} \end{array}$

Department of Astrophysics, University of Vienna

The Multi-Phase Model

Simulations Conclusion

"dw26": Option SplitHot is enabled; $M_{warm,min} = 5 \times 10^{-3} \text{ M}_{\odot}$; $M_{warm,max} = 8 \times 10^{3} \text{ M}_{\odot}$

h _{min}	h_{max}	e	dt_{min}	dt_{max}	Cdrag	r_{ce}	C_{coll}	dt_{coll}
[kpc]	[kpc]	[kpc]	[Myr]	[Myr]	-	[kpc]	-	[Myr]
10^{-2}	5	0.5	10^{-2}	10^{-1}	1	1	10^{-2}	8×10^{3}
	N	<i>M</i> , .	M	·	<i>T</i> /	$\overline{\Gamma}$		
- hot	''cold	INA 1	101	cold	hot	cold		
-	-	[IVI⊙]	[r	vi 🕡 J				
499995	50000	4×10	7 1.96	$\times 10^9$	10^{5}	10^{3}		

Matthias Kühtreiber

Department of Astrophysics, University of Vienna

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
			000000000000000000000000000000000000000	0000000000

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
			000000000000000000000000000000000000000	00000000000

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣ぬぐ

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Department of Astrophysics, University of Vienna

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

Department of Astrophysics, University of Vienna

Department of Astrophysics, University of Vienna

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

Department of Astrophysics, University of Vienna

Department of Astrophysics, University of Vienna

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

Department of Astrophysics, University of Vienna

Department of Astrophysics, University of Vienna

The Multi-Phase Model

Simulations Conclusion

Matthias Kühtreiber

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

< 🗗 >

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
			000000000000000000000000000000000000000	0000000000

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
			000000000000000000000000000000000000000	0000000000

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
			000000000000000000000000000000000000000	0000000000

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

	Introd
	0000

・ロト・日本・日本・日本・日本・日本

Matthias Kühtreiber

Chemo-Dynamical Galaxy Evolution

Department of Astrophysics, University of Vienna

Outline	Introduction	The Multi-Phase Model	Simulations	Conclusion
			000000000000000000000000000000000000000	000000000000000000000000000000000000000

Samland, Hensler, Theis (1997) ApJ 476, 544

FIG. 6.—Oxygen gradient of the CM in the equatorial plane after 15×10^9 yr. The error bars indicate the local fluctuations in the model. Observational data of the sun and of H II regions (*rhombi, triangles*) are plotted for comparison.

Fig. 9.—Observed [O/Fe] and [Fe/H] in comparison with a best-fit model. Abundances of disk and halo dwarf stars and B stars in the Orion association are plotted as squares, triangles, and filled rhombi, respectively. The numbers in the figure give the age (in units of 10° yr) to show how the abundance ratios evolve with time.

Department of Astrophysics, University of Vienna

Matthias Kühtreiber

Outline	Introduction 00000	The Multi-Phase Model	Simulations 000000000000	Conclusion
Conclusi	on			wiversität wien

- The multi-phase model adds a lot additional dynamics
- Most parts are treated by analytical deliberations
- This can help to reduce the number of free parameters compared to single-phase models and less "subgrid-physics" is necessary.
- A single phase model can not reproduce typical properties of the ISM
- Multi-phase is necessary for modelling the characteristic chemical evolution of hot/warm gas and cold clouds. This is a strong motivation for favouring a multi-phase approach.