
©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, March 26-27, 2012 

ICCS School 

 

Advanced GPU Programming for Science 

 

 

Lecture 1: Introduction to 

Scalability 
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Course Objective 

• To master the most commonly used algorithm 

techniques and computational thinking skills 

needed for many-core GPU programming 

– Especially the simple ones! 

 

• In particular, to understand 

– Many-core hardware limitations and constraints 

– Desirable and undesirable computation patterns 

– Importance of controlling computational complexity 

– Commonly used algorithm techniques to convert 

undesirable computation patterns into desirable ones 
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GPU computing is catching on. 

• 280 submissions to GPU Computing Gems 

– More than 80 articles included in two volumes 
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fundamentally different design 

philosophies. 
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2 TFLOPS, 150 GB/s 

30K threads 

0.4 TFLOPS, 30 GB/s 

16-32 threads 



CPUs: Latency Oriented Design  

• Large caches 

– Convert long latency 

memory accesses to short 

latency cache accesses 

• Sophisticated control 

– Branch prediction for 

reduced branch latency 

– Data forwarding for 

reduced data latency 

• Powerful ALUs 

– Reduced operation latency 
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GPUs: Throughput Oriented Design 

• Small caches 

– To boost memory throughput 

• Simple control 

– No branch prediction 

– No data forwarding 

• Energy efficient ALUs 

– Many, long latency but heavily 

pipelined for high throughput 

• Require massive number of 

threads to tolerate latencies 
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Winning Applications Use Both 

CPU and GPU  

• CPUs for sequential 

parts where latency 

matters 

– CPUs can be 10+X 

faster than GPUs for 

sequential code 

 

• GPUs for parallel 

parts where 

throughput wins 

– GPUs can be 10+X 

faster than CPUs for 

parallel code 
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CPUs help the GPUs to overcome load balance, control 

divergence, and memory bandwidth challenges.   



A Common GPU Usage Pattern 
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• A desirable approach considered impractical 

– Due to excessive computational requirement 

– But demonstrated to achieve domain benefit 

– Convolution filtering (e.g. bilateral Gaussian filters), De 

Novo gene assembly, etc. 

• Use GPUs to accelerate the most time-consuming 

aspects of the approach 

– GPU Kernels in CUDA 

– Refactor host code to better support kernels 

– Use CPU to improve the input data characteristics for 

GPU kernels 

• Rethink the domain problem 
8 



EcoG - One of the Most Energy 

Efficient Supercomputers in the World 

• #3 of the Nov 2010 

Green 500 list 

• 128 nodes 

• One Fermi GPU per 

node 

• About 1 GFLOPS/Watt 

• 33.6 TFLOPS DP 

Linpack 

• Built by Illinois 

students and NVIDIA 

researchers 
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CUDA /OpenCL – Execution Model 

• Integrated host+device app C program 

– Serial or modestly parallel parts in host C code 

– Highly parallel parts in device SPMD kernel C code 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

KernelB<<< nBlk, nTid >>>(args); 
10 
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CUDA Devices and Threads 

• A compute device 

– Is a coprocessor to the CPU or host 

– Has its own DRAM (device memory)‏ 

– Runs many threads (work elements for OpenCL) in parallel 

– Is typically a GPU but can also be another type of  parallel 

processing device  

• Data-parallel portions of an application are expressed as 

device kernels which run on many threads 

• Differences between GPU and CPU threads  

– GPU threads are extremely lightweight 

• Very little creation overhead 

– GPU needs 1000s of threads for full efficiency 

• Multi-core CPU needs only a few 
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Arrays of Parallel Threads 

• A CUDA kernel is executed by an array of 
threads 

– All threads run the same code (SPMD)‏ 

– Each thread has an index that it uses to compute 
memory addresses and make control decisions 

 
7 6 5 4 3 2 1 0 

… 

float a = input[threadIdx]; 

float b = func(a); 

output[threadIdx] = b; 

… 

threads 
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… 

float a = input[threadIdx]; 

float b = func(a); 

output[threadIdx] = b; 

… 

threads 

Thread Block 0 

… 
… 

float a = input[threadIdx]; 

float b = func(a); 

output[threadIdx] = b; 

… 

Thread Block 1 

… 

float a = input[threadIdx]; 

float b = func(a); 

output[threadIdx] = b; 

… 

Thread Block N - 1 

Thread Blocks: Scalable Cooperation 

• Divide monolithic thread array into multiple blocks 

– Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization 

– Threads in different blocks cannot cooperate 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 
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Figure 3.2. An Example of CUDA Thread Organization.
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• Each thread uses indices to 

decide what data to work on 

– blockIdx: 1D or 2D, or 3D 

– threadIdx: 1D, 2D, or 3D  

 

• Simplifies memory 
addressing when processing 
multidimensional data 

– Image processing 

– Solving PDEs on volumes 

– … 
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Example: Vector Addition Kernel 

// Compute vector sum C = A+B 

// Each thread performs one pair-wise addition 

__global__ 

void vecAdd(float* A, float* B, float* C, int n) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    if(i<n) C[i] = A[i] + B[i]; 

} 
 

int main() 

{ 

    // Run ceil(N/256) blocks of 256 threads each 

    vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, n); 

} 

Device Code 
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Example: Vector Addition Kernel 

// Compute vector sum C = A+B 

// Each thread performs one pair-wise addition 

__global__ 

void vecAdd(float* A, float* B, float* C, int n) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    if(i<n) C[i] = A[i] + B[i]; 

} 
 

int main() 

{ 

    // Run ceil(N/256) blocks of 256 threads each 

    vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, N); 

} 

Host Code 
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__global__ 

void saxpy(int n, float a, 

           float *x, float *y) 

{ 

   int i = blockIdx.x * blockDim.x 

             + threadIdx.x; 

 

   if( i<n )  y[i] = a * x[i] + y[i]; 

} 

__host__ 

void example() 

{ 

   int B = 128, 

       P = ceil(n/B); 

 vecAdd<<<P,B>>>(n,a,x,y); 

} 

Kernel execution in a nutshell 

Kernel 
Blk 0 Blk 

p-1 • • • 

GPU 
M0 

RAM 

Mk 

RAM 
• • • 

Schedule onto multiprocessors 
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Harvesting Performance Benefit of 

Many-core GPU Requires 

• Massive parallelism in application algorithms 

– Data parallelism 

 

• Regular computation and data accesses 

– Similar work for parallel threads 

 

• Avoidance of conflicts in critical resources 

– Off-chip DRAM (Global Memory) bandwidth 

– Conflicting parallel updates to memory locations 

 

• Control algorithm complexity for data scalability 
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Massive Parallelism - Regularity 
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Main Hurdles to Overcome 

• Serialization due to 

conflicting use of 

critical resources 

 

• Over subscription of 

Global Memory 

bandwidth 

 

• Load imbalance 

among parallel threads 
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Computational Thinking Skills 

• The ability to translate/formulate domain 

problems into computational models that can be 

solved efficiently by available computing 

resources 

– Understanding the relationship between the domain 

problem and the computational models 

– Understanding the strength and limitations of the 

computing devices 

– Defining problems and models to enable efficient 

computational solutions 
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DATA ACCESS CONFLICTS 
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Conflicting Data Accesses Cause 

Serialization and Delays 

• Massively parallel 

execution cannot 

afford serialization 

 

• Contentions in 

accessing critical data 

causes serialization 
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A Simple Example 

• A naïve inner product algorithm of two vectors of 

one million elements each 

– All multiplications can be done in time unit (parallel) 

– Additions to a single accumulator in one million time 

units (serial) 
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How much can conflicts hurt? 

• Amdahl’s‏Law 

– If fraction X of a computation is serialized, the 

speedup can not be more than 1/(1-X) 

 

• In the previous example, X = 50% 

– Half the calculations are serialized 

– No more than 2X speedup, no matter how many 

computing cores are used 
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GLOBAL MEMORY 

BANDWIDTH 
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Global Memory Bandwidth 

Ideal   Reality 
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Global Memory Bandwidth 

• Many-core processors have limited off-chip 

memory access bandwidth compared to peak 

compute throughput 

• Fermi 

– 1 TFLOPS SPFP peak throughput 

– 0.5 TFLOPS DPFP peak throughput 

– 144 GB/s peak off-chip memory access bandwidth 

•  36 G SPFP operands per second  

•  18 G DPFP operands per second  

– To achieve peak throughput, a program must perform 

1,000/36 = ~28 FP arithmetic operations for each 

operand value fetched from off-chip memory 
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LOAD BALANCE 
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Load Balance 

• The total amount of time to complete a parallel 

job is limited by the thread that takes the longest 

to finish 
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good bad 
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How bad can it be? 

• Assume that a job takes 100 units of time for one 

person to finish 

– If we break up the job into 10 parts of 10 units each 

and have fo10 people to do it in parallel, we can get a 

10X speedup 

– If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5 

units, the same 10 people will take 50 units to finish, 

with 9 of them idling for most of the time. We will get 

no more than 2X speedup. 
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How does imbalance come about? 
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• Non-uniform data 

distributions 

– Highly concentrated 

spatial data areas 

– Astronomy, medical 

imaging, computer 

vision,‏rendering,‏… 

• If each thread 

processes the input 

data of a given spatial 

volume unit, some will 

do a lot more work 

than others 32 



ALGORITHM COMPLEXITY 
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Algorithm Complexity 

• Classic CS Topic 

• The rate at which the 

number of operations 

performed by an 

algorithm  grows as 

the data size 

increases 

©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, 
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A Common Parallel Algorithm Pitfall 

• A sequential algorithm 

is of linear complexity 

• A scalable parallel 

algorithm is of higher 

complexity, say 

quadratic 

• For small data sets, 

parallel wins 

• As data size grows, 

sequential wins 

©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, 
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But, processing large data sets is a 

major motivation for using GPUs! 



Complexity Example: Tri-diagonal 

Solvers 

• Classic Gaussian 

elimination based 

algorithms are of 

linear complexity 

– But sequential for each 

system being solved 

• Cyclic Reduction 

based algorithms are 

of n*log(n) complexity 

– Use divide and concur 

to create parallelism 

for a system being 

solved 
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For a large system, one can uses cyclic reduction to 

create multiple smaller systems and then use traditional 

Gaussian elimination based sequential algorithm on each. 



Eight Algorithmic Techniques  
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http://courses.engr.illinois.edu/ece598/hk/ 

GPU Computing Gems, Vol. 1 and 2 
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You can do it. 

• Computational thinking 

is not as hard as you 

may think it is. 

– Most techniques have 

been explained, if at all, 

at the level of computer 

experts. 

– The purpose of the 

course is to make them 

accessible to domain 

scientists and engineers. 
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A Simple Running Example 

Matrix Multiplication 

• A simple illustration of the basic features of 

memory and thread management in CUDA 

programs 

– Thread index usage 

– Memory layout 

– Register usage 

– Assume square matrix for simplicity 

– Leave shared memory usage until later 
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Square Matrix-Matrix Multiplication 

• P = M * N of size WIDTH x WIDTH 

– Each thread calculates one 

element of P 

– Each row of M is loaded WIDTH 

times from global memory 

– Each column of N is loaded 

WIDTH times from global memory 
M 

N 

P 

 

 

 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 
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M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

Memory Layout of a Matrix in C 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 
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Matrix Multiplication 

A Simple Host Version in C 

M 

N 

P 

 

 

 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

/ /  Matrix multiplication on the (CPU) host in double 

precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 

{    

    for (int i = 0; i < Width; ++i)‏ 

        for (int j = 0; j < Width; ++j) { 

            double sum = 0; 

            for (int k = 0; k < Width; ++k) { 

                double a = M[i * Width + k]; 

                double b = N[k * Width + j]; 

                sum += a * b; 

            } 

            P[i * Width + j] = sum; 

        } 

} 

 

i 

k 

k 

j 
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Kernel Function - A Small Example 

• Have each 2D thread block to compute a (TILE_WIDTH)2 

sub-matrix (tile) of the result matrix 

– Each has (TILE_WIDTH)2 threads 

• Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Block(0,0) Block(1,0) 

Block(1,1) Block(0,1) 

WIDTH = 4;   TILE_WIDTH = 2 

Each block has 2*2 = 4 threads 

WIDTH/ TILE_WIDTH = 2 

Use 2* 2 = 4 blocks 
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A Slightly Bigger Example 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

P5,0 P4,0 

P4,1 

P6,0 P7,0 

P5,1 

P4,2 P6,2 P7,2 P5,2 

P7,1 P6,1 

44,3 P6,3 P7,3 P5,3 

P1,4 P0,4 

P0,5 

P2,4 P3,4 

P1,5 

P0,6 P2,6 P3,6 P1,6 

P3,5 P2,5 

P0,7 P2,7 P3,7 P1,7 

P5,4 P4,4 

P4,5 

P6,4 P7,4 

P5,5 

P4,6 P6,6 P7,6 P5,6 

P7,5 P6,5 

P4,7 P6,7 P7,7 P5,7 

WIDTH = 8;   TILE_WIDTH = 2 

Each block has 2*2 = 4 threads 

WIDTH/ TILE_WIDTH = 4 

Use 4* 4 = 16 blocks 

Block(0,0) Block(1,0) 

Block(0,1) 

Block(0,2) 

Block(2,0) Block(3,0) 
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A Slightly Bigger Example (cont.) 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

P5,0 P4,0 

P4,1 

P6,0 P7,0 

P5,1 

P4,2 P6,2 P7,2 P5,2 

P7,1 P6,1 

44,3 P6,3 P7,3 P5,3 

P1,4 P0,4 

P0,5 

P2,4 P3,4 

P1,5 

P0,6 P2,6 P3,6 P1,6 

P3,5 P2,5 

P0,7 P2,7 P3,7 P1,7 

P5,4 P4,4 

P4,5 

P6,4 P7,4 

P5,5 

P4,6 P6,6 P7,6 P5,6 

P7,5 P6,5 

P4,7 P6,7 P7,7 P5,7 

WIDTH = 8;   TILE_WIDTH = 4 

Each block has 4*4 =16 threads 

WIDTH/ TILE_WIDTH = 2 

Use 2* 2 = 4 blocks 

Block(0,0) Block(1,0) 
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    // Setup the execution configuration 

    // TILE_WIDTH is a #define constant 

          dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1); 
       dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1); 

 

 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Kernel Invocation (Host-side Code)  

46 
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Kernel Function 

// Matrix multiplication kernel – per thread code 
 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)‏ 

{ 

     

    // Pvalue is used to store the element of the matrix 

    // that is computed by the thread 

    float Pvalue = 0; 
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Col   = 0 * (TILE_WIDTH) + threadIdx.x 

Row = 0 * (TILE_WIDTH) + threadIdx.y 

C
o

l =
 0

 

C
o

l =
 1

 

Thread Mapping for Block (0,0) 

in a TILE_WIDTH = 2 Configuration 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 

Row = 0 

Row = 1 

blockIdx.x blockIdx.y 
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Work for Block (1,0) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Row = 0 

Row = 1 

C
o

l =
 2

 

C
o

l =
 3

 Col   = 1 * (TILE_WIDTH) + threadIdx.x 

Row = 0 * (TILE_WIDTH) + threadIdx.y 

blockIdx.x blockIdx.y 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 
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Work for Block (0,1) 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Row = 2 

Row = 3 

C
o

l =
 0

 

C
o

l =
 1

 Col   = 0 * (TILE_WIDTH) + threadIdx.x 

Row = 1 * (TILE_WIDTH) + threadIdx.y 

blockIdx.x blockIdx.y 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 
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Work for Block (1,1) 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Row = 2 

Row = 3 

C
o

l =
 2

 

C
o

l =
 3

 Col  = 1 * (TILE_WIDTH) + threadIdx.x 

Row = 1 * (TILE_WIDTH) + threadIdx.y 

blockIdx.x blockIdx.y 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 
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A Simple Matrix Multiplication Kernel 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 

{ 
// Calculate the row index of the d_P element and d_M 

 int Row = blockIdx.y*blockDim.y+threadIdx.y; 

// Calculate the column idenx of d_P and d_N 

 int Col = blockIdx.x*blockDim.x+threadIdx.x; 

 

 if ((Row < Width) && (Col < Width)) { 

 float Pvalue = 0; 

// each thread computes one element of the block sub-matrix 

 for (int k = 0; k < Width; ++k) 

    Pvalue += d_M[Row*Width+k]*             
      d_N[k*Width+Col]; 

   d_P[Row*Width+Col] = Pvalue; 

  } 

} ©Wen-mei W. Hwu and David  Kirk/ NVIDIA,  Beijing, March 26-27, 2012 
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ANY MORE QUESTIONS? 

©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, 

March 26-27, 2012 
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