|ICCS School

Advanced GPU Programming for Science

Lecture 1: Introduction to
Scalability

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

Course Objective

* To master the most commonly used algorithm
techniques and computational thinking skills
needed for many-core GPU programming
— Especially the simple ones!

 |n particular, to understand
— Many-core hardware limitations and constraints
— Desirable and undesirable computation patterns
— Importance of controlling computational complexity

— Commonly used algorithm techniques to convert
undesirable computation patterns into desirable ones ,

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

GPU computing Is catching on.

DEIF
Intensive
Analytics

Medical
Imaging

Financial Scientific Engineering
Analysis Simulation Simulation

Electronic

S Video_ Vision Informatics DeS|gr_1
Processing Processing Automation

Digital Digital Computer Biomedical

Ray
Tracing
Rendering

Interactive Numerical
Physics Methods

Statistical
Modeling

» 280 submissions to GPU Computing Gems
— More than 80 articles included in two volumes

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

CPUs and GPUs have
fundamentally different design
philosophies.

8]]] B A 9 o] §
|

DRAM

DRAM

0.4 TFLOPS, 30 GB/s 2 TFLOPS, 150 GB/s
16-32 threads 30K threads

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

CPUs: Latency Oriented Design

« Large caches

— Convert long latency
memory accesses to short
latency cache accesses

CPU

* Sophisticated control
— Branch prediction for Sl
reduced branch latency

— Data forwarding for
reduced data latency

» Powerful ALUs
— Reduced operation latency

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

DRAM

GPUs: Throughput Oriented Design

Small caches
— To boost memory throughput

Simple control

— No branch prediction
— No data forwarding
Energy efficient ALUs

— Many, long latency but heavily,
pipelined for high throughput =%

Require massive number of
threads to tolerate latencies

GPL

8]]] B A 9 o] §

(o] I

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

Winning Applications Use Both

CPU and GPU
 CPUs for sequential * GPUs for parallel
parts where latency parts where
matters throughput wins
— CPUs can be 10+X — GPUs can be 10+X
faster than GPUSs for faster than CPUs for
sequential code parallel code

CPUs help the GPUs to overcome load balance, control
divergence, and memory bandwidth challenges.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

A Common GPU Usage Pattern

* A desirable approach considered impractical
— Due to excessive computational requirement
— But demonstrated to achieve domain benefit

— Convolution filtering (e.g. bilateral Gaussian filters), De
Novo gene assembly, etc.

« Use GPUs to accelerate the most time-consuming
aspects of the approach

— GPU Kernels in CUDA
— Refactor host code to better support kernels

— Use CPU to improve the input data characteristics for
GPU kernels

* Rethink the domain problem

EcoG - One of the Most Energy
Efficient Supercomputers in the World

« #3 of the Nov 2010 * Built by lllinois
Green 500 list students and NVIDIA
e 128 nodes researchers

* One Fermi GPU per
node
* About 1 GFLOPS/Watt

« 33.6 TFLOPS DP
Linpack

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

CUDA /OpenCL — Execution Model

* Integrated host+device app C program

— Serial or modestly parallel parts in host C code

— Highly parallel parts in device SPMD kernel C code

Serial Code (host)

DO

Parallel Kernel (device)

KernelA<<< nBIk, nTid >>>(args);

Serial Code (host)

D>

DO

\\\

Parallel Kernel (device)

KernelB<<< nBIk, nTid >>>(args);

DI

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

10

CUDA Devices and Threads

A compute device
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads (work elements for OpenCL) in parallel
— Is typically a GPU but can also be another type of parallel
processing device
« Data-parallel portions of an application are expressed as
device kernels which run on many threads

 Differences between GPU and CPU threads

— GPU threads are extremely lightweight
« Very little creation overhead

— GPU needs 1000s of threads for full efficiency
* Multi-core CPU needs only a few

11
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

Arrays of Parallel Threads

A CUDA kernel is executed by an array of
threads
— All threads run the same code (SPMD)

— Each thread has an index that it uses to compute
memory addresses and make control decisions

threads o|l1|2(3|4|5|6]|7

float a = input[threadIdx];

float b = func(a);
output[threadlIdx] = b;

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

12
12

Thread Blocks: Scalable Cooperation

« Divide monolithic thread array into multiple blocks

— Threads within a block cooperate via shared memory,
atomic operations and barrier synchronization

— Threads in different blocks cannot cooperate

Thread Block O Thread Block 1 Thread Block N - 1

O 1| 2| 3| 4| 5| 6| 7 0] 1| 2|1 3| 4] 5| 6|7

float a = input[threadIdx]; float a = input[threadIdx]; float a = input[threadIdx];

float b = func(a);
output[threadIdx] = b;

float b = func(a); float b = func(a);

output[threadIdx] = b; LI] output|[threadIdx] = b;

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 13

March 26-27, 2012

blockldx and threadldx

Host Device

 Each thread uses indices to
decide what data to work on o

’ » | Block Block

— blockldx: 1D or 2D, or 3D : 00 | (0

— threadldx: 1D, 2D, or 3D

Grid 1

Blocl;' (Block
(%)) L)

p—

« Simplifies memory /G2 /]

addressing when processing kend gy | If
multidimensional data el 1
— Image processing

— Solving PDEs on volumes

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 14
March 26-27, 2012

Example: Vector Addition Kernel

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global

void vecqad(float* A, float* B, float* C, int n)
{

—dnt i1 = thrgadldx.x—+ blockDim.x * blockIdx.x;
if(i<n) CJ[i] = Afi]l + BIlil:

}

int main ()
{
// Run ceil (N/256) blocks of 256 threads each

vecAdd<<<ceil (N/256), 256>>>(d A, d B, d C, n);

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 15
Mar&h 26-27, 2012

Example: Vector Addition Kernel

~_global

vold vecAdd (float* A, float* B, float* C, int n)

{
int 1 = threadldx.x + blockDim.x * blockIdx.x;
if(i<n) C[i] = A[i] + BI[i];

}

int main ()
{
// Run ceil (N/256) blocks of 256 threads each

vecAdd<<<ceil (N/256), 256>>>(d A, d B, d C, N);

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 16
Mar&h 26-27, 2012

H Kernel execution Iin a nutshell

__host __global

blockIdx.x blockDim.x

vecAdd<<<P,B>>>(n,a,x,Vy) ;s threadIdx.x

Kernel

©Wen-mei W. Hwu and David Kirk/ N\AB
March 26-27, 2012

Harvesting Performance Benefit of
Many-core GPU Requires

« Massive parallelism in application algorithms
— Data parallelism

* Regular computation and data accesses
— Similar work for parallel threads

* Avoidance of conflicts in critical resources
— Off-chip DRAM (Global Memory) bandwidth
— Conflicting parallel updates to memory locations

» Control algorithm complexity for data scalability

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

ty

Regular

Parallelism -

Ve

Mass

©Wen-mei W. Hwu and David

March 26-27, 2012

Main Hurdles to Overcome

 Serialization due to
conflicting use of
critical resources

* Over subscription of
Global Memory
bandwidth

 Load imbalance
among parallel threads

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 20
March 26-27, 2012

Computational Thinking Skills

* The abllity to translate/formulate domain
problems into computational models that can be

solved efficiently by available computing
resources

— Understanding the relationship between the domain
problem and the computational models

— Understanding the strength and limitations of the
computing devices

— Defining problems and models to enable efficient
computational solutions

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 21
March 26-27, 2012

DATA ACCESS CONFLICTS

22

Conflicting Data Accesses Cause

Serialization and Delays
+ Massively parallel g
execution cannot "W

afford serialization ;T LA

« Contentions in
accessing critical data
causes serialization

Py €D mernasonal Ticketng Py All Gates 3
(3 News & Gifts 8 security GecBBons

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

A Simple Example

* A naive inner product algorithm of two vectors of
one million elements each
— All multiplications can be done in time unit (parallel)

— Additions to a single accumulator in one million time
units (serial)

) Tinc

24

@Wen-mei W.
March 26-27, 201

David Kirk/ NVIDIA, Beijing,

How much can conflicts hurt?

« Amdahl’'s Law

— If fraction X of a computation is serialized, the
speedup can not be more than 1/(1-X)

* In the previous example, X = 50%
— Half the calculations are serialized

— No more than 2X speedup, no matter how many
computing cores are used

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

25

GLOBAL MEMORY
BANDWIDTH

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

Global Memory Bandwidth

Ideal Reality

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

27

Global Memory Bandwidth

« Many-core processors have limited off-chip
memory access bandwidth compared to peak
compute throughput

 Fermi
— 1 TFLOPS SPFP peak throughput
— 0.5 TFLOPS DPFP peak throughput

— 144 GB/s peak off-chip memory access bandwidth

« 36 G SPFP operands per second
« 18 G DPFP operands per second

— To achieve peak throughput, a program must perform
1,000/36 = ~28 FP arithmetic operations for each
operand value fetched from off-chip memory 28

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

LOAD BALANCE

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

29

| oad Balance

* The total amount of time to complete a parallel
job is limited by the thread that takes the longest
to finish

good bad

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 30
March 26-27, 2012

How bad can it be?

* Assume that a job takes 100 units of time for one
person to finish

— If we break up the job into 10 parts of 10 units each
and have fol0 people to do it in parallel, we can get a
10X speedup

— If we break up the job into 50, 10, 5,5, 5,5,5,5,5, 5
units, the same 10 people will take 50 units to finish,

with 9 of them idling for most of the time. We will get
no more than 2X speedup.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 31
March 26-27, 2012

How does imbalance come about?

« Non-uniform data
distributions

— Highly concentrated
spatial data areas

— Astronomy, medical
Imaging, computer

vision, rendering, ...

* If each thread
processes the input
data of a given spatial
volume unit, some will
do a lot more work

@ than others

32

ALGORITHM COMPLEXITY

33

Algorithm Complexity

* Classic CS Topic

* The rate at which the
number of operations ™
performed by an
algorithm grows as
the data size
Increases

Execution Time
N [e)] (02]
o o o

N
o

0

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

Quadratis
—nlog(n)
—Linear
1000 2000 3000 4000 5000 6000 7000 8000 9000
Data Size
34

A Common Parallel Algorithm Pitfall

* A sequential algorithm
IS of linear complexity _

» A scalable parallel 2
algorithm is of higher .
complexity, say

/ —Linear

—
a

—
o

Execution Time

quadratic 5 - B
 For small data sets, |, /

parallel wins IR I sz
» As data size grows,

sequential wins But, processing large data sets is a

major motivation for using GPUs!

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 35
March 26-27, 2012

Complexity Example: Tri-diagonal

Solvers
* Classic Gaussian e Cyclic Reduction
elimination based based algorithms are
algorithms are of of n*log(n) complexity
linear complexity — Use divide and concur
— But sequential for each to create parallelism
system being solved for a system being
solved

For a large system, one can uses cyclic reduction to
create multiple smaller systems and then use traditional
Gaussian elimination based sequential algorithm on each.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 36
March 26-27, 2012

Eight Algorithmic Technigues

Technique Contention | Bandwidth | Locality | Efficiency | Load Imbalance | CPU Leveraging
Tiling X X

Privatization X X

Regularization X X X
Compaction X

Binning X X X X

Data Layout Transformation X X

Thread Coarsening X X X X

Scatter to Gather Conversion X

March 26-27, 2012

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

37

http://courses.engr.illinois.edu/ece598/hk/
http://courses.engr.illinois.edu/ece598/hk/
http://courses.engr.illinois.edu/ece598/hk/

You can do It.

« Computational thinking
IS not as hard as you
may think it is.

— Most techniques have
been explained, if at all,

at the level of computer
experts.

— The purpose of the
course is to make them
accessible to domain
scientists and engineers.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, 38
March 26-27, 2012

A Simple Running Example
Matrix Multiplication

* A simple illustration of the basic features of
memory and thread management in CUDA
programs
— Thread index usage
— Memory layout
— Register usage
— Assume square matrix for simplicity
— Leave shared memory usage until later

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

39

Square Matrix-Matrix Multiplication

e P=M?*N of size WIDTH x WIDTH
— Each calculates one
element of P
— Each row of M iIs loaded WIDTH
times from global memory

— Each column of N is loaded
WIDTH times from global memory

©Wen-mei W. Hwu and David Kirk/NVIDIA, X P

Memory Layout of a Matrix in C

©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27, 2012

41

Matrix Multiplication
A Simple Host Version in C

[| Matrix multiplication on the (CPU) host in double
precision

void MatrixMulOnHost(float* M, float* N, float* P, int Width)

{

for (inti = 0; i < Width; ++i) J
for (intj = 0; j < Width; ++j) {
double sum = 0O;
for (int k = 0; k < Width; ++k) {
double a = M[i * Width + K];
double b = N[k * Width + j];
sum +=a * b; i
}
P[i * Width + j] = sum;

} } Tk

©Wen-mei W. Hwu and David Kirk/NVIDIA, Eg

Y.

\ 4
A

v

Kernel Function - A Small Example

« Have each 2D thread block to compute a (TILE_WIDTH)?
sub-matrix (tile) of the result matrix

— Each has (TILE_WIDTH)?threads

Generate a 2D Grid of (WIDTH/TILE_WIDTH)? blocks
Block(0,0) Block(1,0)

\ /

WIDTH =4; TILE WIDTH =2
Each block has 2*2 = 4 threads

WIDTH/ TILE WIDTH =2
Use 2*2 = 4 blocks

Block(0,1) Block(1,1)
43
©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27, 2012

A Slightly Bigger Example

Block(0,0)

AN

Block(1,0) Block(2,0) Block(3,0)

N

e

Block(0,1)

e

Block(0,2)

WIDTH =8; TILE WIDTH =2
Each block has 2*2 = 4 threads

WIDTH/ TILE WIDTH =4
Use 4*4 = 16 blocks

44

A Slightly Bigger Example (cont.)

Block(0,0) Block(1,0)

AN

WIDTH =8; TILE WIDTH =4
Each block has 4*4 =16 threads

WIDTH/ TILE WIDTH =2
Use 2*2 = 4 blocks

45

Kernel Invocation (Host-side Code)

/Il Setup the execution configuration
/[TILE_WIDTH is a #define constant

dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

46

Kernel Function

// Matrix multiplication kernel — per thread code

__global __ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)

{

/| Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = O:;

47
©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27,

2012

Thread Mapping for Block (0,0)
ina TILE_ WIDTH = 2 Configuration

=
o
*(TILE_WIDTH) + thread ldx.x o

*(TILE_WIDTH) + threadldx.y

Col =
Row =

blockldx.y

Row =0 Frr:
Row = 1 —Tr Y,

48
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

Work for Block (1,0)

OO0

S 2

I

Col *(TILE_WIDTH) + thread ldx.x N w
Row *(TILE_WIDTH) + thread ldx.y

blockldx.y
Row =0 RO A '!’r::-
Row = 1 — Py,

49
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

Work for Block (0,1)

O

© o

I 1l

Col =0*(TILE WIDTH) + threadldx.x o
Row =/1 *(TILE_WIDTH) + thread ldx.y

blockldx.y
_ e

Row =2 Ir r;

Row = 3 > vV

—

50

Work for Block (1,1)

Col = 1 *(TILE_WIDTH) + threadldx.x
Row =/1 *(TILE_WIDTH) + threadldx.y

blockldx.y

\
|
|
|
Row =2 S ,‘“'t'

Row =3 - > | ¥

o1

A Simple Matrix Multiplication Kernel

__global _ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)
{

// Calculate the row index of the d P element and d M

int Row = blockIdx.y*blockDim.ytthreadIdx.y;

// Calculate the column idenx of d P and d N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

1f ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width,; ++k)

Pvalue += d M[Row*Width+k]™*
d N[k*Width+Col];

d P[Row*Width+Col] = Pvalue;
}

} ©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

52

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,
March 26-27, 2012

53

