
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

ICCS School

Advanced GPU Programming for Science

Lecture 1: Introduction to

Scalability

1

Course Objective

• To master the most commonly used algorithm

techniques and computational thinking skills

needed for many-core GPU programming

– Especially the simple ones!

• In particular, to understand

– Many-core hardware limitations and constraints

– Desirable and undesirable computation patterns

– Importance of controlling computational complexity

– Commonly used algorithm techniques to convert

undesirable computation patterns into desirable ones

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

2

GPU computing is catching on.

• 280 submissions to GPU Computing Gems

– More than 80 articles included in two volumes

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

Financial

Analysis

Scientific

Simulation

Engineering

Simulation

Data

Intensive

Analytics

Medical

Imaging

Digital

Audio

Processing

Computer

Vision

Digital

Video

Processing

Biomedical

Informatics

Electronic

Design

Automation

Statistical

Modeling

Ray

Tracing

Rendering

Interactive

Physics

Numerical

Methods

3

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

DRAM

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have

fundamentally different design

philosophies.

4

2 TFLOPS, 150 GB/s

30K threads

0.4 TFLOPS, 30 GB/s

16-32 threads

CPUs: Latency Oriented Design

• Large caches

– Convert long latency

memory accesses to short

latency cache accesses

• Sophisticated control

– Branch prediction for

reduced branch latency

– Data forwarding for

reduced data latency

• Powerful ALUs

– Reduced operation latency

 ©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

5

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design

• Small caches

– To boost memory throughput

• Simple control

– No branch prediction

– No data forwarding

• Energy efficient ALUs

– Many, long latency but heavily

pipelined for high throughput

• Require massive number of

threads to tolerate latencies

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

6

DRAM

GPU

Winning Applications Use Both

CPU and GPU

• CPUs for sequential

parts where latency

matters

– CPUs can be 10+X

faster than GPUs for

sequential code

• GPUs for parallel

parts where

throughput wins

– GPUs can be 10+X

faster than CPUs for

parallel code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

7

CPUs help the GPUs to overcome load balance, control

divergence, and memory bandwidth challenges.

A Common GPU Usage Pattern

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

• A desirable approach considered impractical

– Due to excessive computational requirement

– But demonstrated to achieve domain benefit

– Convolution filtering (e.g. bilateral Gaussian filters), De

Novo gene assembly, etc.

• Use GPUs to accelerate the most time-consuming

aspects of the approach

– GPU Kernels in CUDA

– Refactor host code to better support kernels

– Use CPU to improve the input data characteristics for

GPU kernels

• Rethink the domain problem
8

EcoG - One of the Most Energy

Efficient Supercomputers in the World

• #3 of the Nov 2010

Green 500 list

• 128 nodes

• One Fermi GPU per

node

• About 1 GFLOPS/Watt

• 33.6 TFLOPS DP

Linpack

• Built by Illinois

students and NVIDIA

researchers

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

9

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

CUDA /OpenCL – Execution Model

• Integrated host+device app C program

– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏

KernelB<<< nBlk, nTid >>>(args);
10

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

CUDA Devices and Threads

• A compute device

– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)‏

– Runs many threads (work elements for OpenCL) in parallel

– Is typically a GPU but can also be another type of parallel

processing device

• Data-parallel portions of an application are expressed as

device kernels which run on many threads

• Differences between GPU and CPU threads

– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

11

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012 12

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads

– All threads run the same code (SPMD)‏

– Each thread has an index that it uses to compute
memory addresses and make control decisions

7 6 5 4 3 2 1 0

…

float a = input[threadIdx];

float b = func(a);

output[threadIdx] = b;

…

threads

12

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

…

float a = input[threadIdx];

float b = func(a);

output[threadIdx] = b;

…

threads

Thread Block 0

…
…

float a = input[threadIdx];

float b = func(a);

output[threadIdx] = b;

…

Thread Block 1

…

float a = input[threadIdx];

float b = func(a);

output[threadIdx] = b;

…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks

– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

13

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

• Each thread uses indices to

decide what data to work on

– blockIdx: 1D or 2D, or 3D

– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data

– Image processing

– Solving PDEs on volumes

– …

14

Example: Vector Addition Kernel

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAdd(float* A, float* B, float* C, int n)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 if(i<n) C[i] = A[i] + B[i];

}

int main()

{

 // Run ceil(N/256) blocks of 256 threads each

 vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, n);

}

Device Code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

15

Example: Vector Addition Kernel

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAdd(float* A, float* B, float* C, int n)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 if(i<n) C[i] = A[i] + B[i];

}

int main()

{

 // Run ceil(N/256) blocks of 256 threads each

 vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, N);

}

Host Code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

16

__global__

void saxpy(int n, float a,

 float *x, float *y)

{

 int i = blockIdx.x * blockDim.x

 + threadIdx.x;

 if(i<n) y[i] = a * x[i] + y[i];

}

__host__

void example()

{

 int B = 128,

 P = ceil(n/B);

 vecAdd<<<P,B>>>(n,a,x,y);

}

Kernel execution in a nutshell

Kernel
Blk 0 Blk

p-1 • • •

GPU
M0

RAM

Mk

RAM
• • •

Schedule onto multiprocessors

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

17

Harvesting Performance Benefit of

Many-core GPU Requires

• Massive parallelism in application algorithms

– Data parallelism

• Regular computation and data accesses

– Similar work for parallel threads

• Avoidance of conflicts in critical resources

– Off-chip DRAM (Global Memory) bandwidth

– Conflicting parallel updates to memory locations

• Control algorithm complexity for data scalability

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

18

Massive Parallelism - Regularity

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

19

Main Hurdles to Overcome

• Serialization due to

conflicting use of

critical resources

• Over subscription of

Global Memory

bandwidth

• Load imbalance

among parallel threads

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

20

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

Computational Thinking Skills

• The ability to translate/formulate domain

problems into computational models that can be

solved efficiently by available computing

resources

– Understanding the relationship between the domain

problem and the computational models

– Understanding the strength and limitations of the

computing devices

– Defining problems and models to enable efficient

computational solutions

21

DATA ACCESS CONFLICTS

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

22

Conflicting Data Accesses Cause

Serialization and Delays

• Massively parallel

execution cannot

afford serialization

• Contentions in

accessing critical data

causes serialization

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

23

A Simple Example

• A naïve inner product algorithm of two vectors of

one million elements each

– All multiplications can be done in time unit (parallel)

– Additions to a single accumulator in one million time

units (serial)

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

*

*

*

*

*

+

*

+ + + ……

Time

24

How much can conflicts hurt?

• Amdahl’s‏Law

– If fraction X of a computation is serialized, the

speedup can not be more than 1/(1-X)

• In the previous example, X = 50%

– Half the calculations are serialized

– No more than 2X speedup, no matter how many

computing cores are used

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

25

GLOBAL MEMORY

BANDWIDTH

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

26

Global Memory Bandwidth

Ideal Reality

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

27

Global Memory Bandwidth

• Many-core processors have limited off-chip

memory access bandwidth compared to peak

compute throughput

• Fermi

– 1 TFLOPS SPFP peak throughput

– 0.5 TFLOPS DPFP peak throughput

– 144 GB/s peak off-chip memory access bandwidth

• 36 G SPFP operands per second

• 18 G DPFP operands per second

– To achieve peak throughput, a program must perform

1,000/36 = ~28 FP arithmetic operations for each

operand value fetched from off-chip memory

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

28

LOAD BALANCE

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

29

Load Balance

• The total amount of time to complete a parallel

job is limited by the thread that takes the longest

to finish

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

good bad

30

How bad can it be?

• Assume that a job takes 100 units of time for one

person to finish

– If we break up the job into 10 parts of 10 units each

and have fo10 people to do it in parallel, we can get a

10X speedup

– If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5

units, the same 10 people will take 50 units to finish,

with 9 of them idling for most of the time. We will get

no more than 2X speedup.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

31

How does imbalance come about?

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

• Non-uniform data

distributions

– Highly concentrated

spatial data areas

– Astronomy, medical

imaging, computer

vision,‏rendering,‏…

• If each thread

processes the input

data of a given spatial

volume unit, some will

do a lot more work

than others 32

ALGORITHM COMPLEXITY

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

33

Algorithm Complexity

• Classic CS Topic

• The rate at which the

number of operations

performed by an

algorithm grows as

the data size

increases

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

34

A Common Parallel Algorithm Pitfall

• A sequential algorithm

is of linear complexity

• A scalable parallel

algorithm is of higher

complexity, say

quadratic

• For small data sets,

parallel wins

• As data size grows,

sequential wins

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

35

But, processing large data sets is a

major motivation for using GPUs!

Complexity Example: Tri-diagonal

Solvers

• Classic Gaussian

elimination based

algorithms are of

linear complexity

– But sequential for each

system being solved

• Cyclic Reduction

based algorithms are

of n*log(n) complexity

– Use divide and concur

to create parallelism

for a system being

solved

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

36

For a large system, one can uses cyclic reduction to

create multiple smaller systems and then use traditional

Gaussian elimination based sequential algorithm on each.

Eight Algorithmic Techniques

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

http://courses.engr.illinois.edu/ece598/hk/

GPU Computing Gems, Vol. 1 and 2

37

http://courses.engr.illinois.edu/ece598/hk/
http://courses.engr.illinois.edu/ece598/hk/
http://courses.engr.illinois.edu/ece598/hk/

You can do it.

• Computational thinking

is not as hard as you

may think it is.

– Most techniques have

been explained, if at all,

at the level of computer

experts.

– The purpose of the

course is to make them

accessible to domain

scientists and engineers.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

38

A Simple Running Example

Matrix Multiplication

• A simple illustration of the basic features of

memory and thread management in CUDA

programs

– Thread index usage

– Memory layout

– Register usage

– Assume square matrix for simplicity

– Leave shared memory usage until later

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

39

©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27, 2012

Square Matrix-Matrix Multiplication

• P = M * N of size WIDTH x WIDTH

– Each thread calculates one

element of P

– Each row of M is loaded WIDTH

times from global memory

– Each column of N is loaded

WIDTH times from global memory
M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

40

©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27, 2012

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

41

©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27, 2012

Matrix Multiplication

A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

/ / Matrix multiplication on the (CPU) host in double

precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏

{

 for (int i = 0; i < Width; ++i)‏

 for (int j = 0; j < Width; ++j) {

 double sum = 0;

 for (int k = 0; k < Width; ++k) {

 double a = M[i * Width + k];

 double b = N[k * Width + j];

 sum += a * b;

 }

 P[i * Width + j] = sum;

 }

}

i

k

k

j

42

Kernel Function - A Small Example

• Have each 2D thread block to compute a (TILE_WIDTH)2

sub-matrix (tile) of the result matrix

– Each has (TILE_WIDTH)2 threads

• Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks

©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27, 2012

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

WIDTH = 4; TILE_WIDTH = 2

Each block has 2*2 = 4 threads

WIDTH/ TILE_WIDTH = 2

Use 2* 2 = 4 blocks

43

A Slightly Bigger Example

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

P5,0 P4,0

P4,1

P6,0 P7,0

P5,1

P4,2 P6,2 P7,2 P5,2

P7,1 P6,1

44,3 P6,3 P7,3 P5,3

P1,4 P0,4

P0,5

P2,4 P3,4

P1,5

P0,6 P2,6 P3,6 P1,6

P3,5 P2,5

P0,7 P2,7 P3,7 P1,7

P5,4 P4,4

P4,5

P6,4 P7,4

P5,5

P4,6 P6,6 P7,6 P5,6

P7,5 P6,5

P4,7 P6,7 P7,7 P5,7

WIDTH = 8; TILE_WIDTH = 2

Each block has 2*2 = 4 threads

WIDTH/ TILE_WIDTH = 4

Use 4* 4 = 16 blocks

Block(0,0) Block(1,0)

Block(0,1)

Block(0,2)

Block(2,0) Block(3,0)

44

A Slightly Bigger Example (cont.)

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

P5,0 P4,0

P4,1

P6,0 P7,0

P5,1

P4,2 P6,2 P7,2 P5,2

P7,1 P6,1

44,3 P6,3 P7,3 P5,3

P1,4 P0,4

P0,5

P2,4 P3,4

P1,5

P0,6 P2,6 P3,6 P1,6

P3,5 P2,5

P0,7 P2,7 P3,7 P1,7

P5,4 P4,4

P4,5

P6,4 P7,4

P5,5

P4,6 P6,6 P7,6 P5,6

P7,5 P6,5

P4,7 P6,7 P7,7 P5,7

WIDTH = 8; TILE_WIDTH = 4

Each block has 4*4 =16 threads

WIDTH/ TILE_WIDTH = 2

Use 2* 2 = 4 blocks

Block(0,0) Block(1,0)

45

 // Setup the execution configuration

 // TILE_WIDTH is a #define constant

 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Kernel Invocation (Host-side Code)

46

©Wen-mei W. Hwu and David Kirk/NVIDIA, Beijing, March 26-27,

2012

Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)‏

{

 // Pvalue is used to store the element of the matrix

 // that is computed by the thread

 float Pvalue = 0;

47

Col = 0 * (TILE_WIDTH) + threadIdx.x

Row = 0 * (TILE_WIDTH) + threadIdx.y

C
o

l =
 0

C
o

l =
 1

Thread Mapping for Block (0,0)

in a TILE_WIDTH = 2 Configuration

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

Row = 0

Row = 1

blockIdx.x blockIdx.y

48

Work for Block (1,0)

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Row = 0

Row = 1

C
o

l =
 2

C
o

l =
 3

 Col = 1 * (TILE_WIDTH) + threadIdx.x

Row = 0 * (TILE_WIDTH) + threadIdx.y

blockIdx.x blockIdx.y

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

49

Work for Block (0,1)

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Row = 2

Row = 3

C
o

l =
 0

C
o

l =
 1

 Col = 0 * (TILE_WIDTH) + threadIdx.x

Row = 1 * (TILE_WIDTH) + threadIdx.y

blockIdx.x blockIdx.y

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

50

Work for Block (1,1)

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Row = 2

Row = 3

C
o

l =
 2

C
o

l =
 3

 Col = 1 * (TILE_WIDTH) + threadIdx.x

Row = 1 * (TILE_WIDTH) + threadIdx.y

blockIdx.x blockIdx.y

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

51

A Simple Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)

{
// Calculate the row index of the d_P element and d_M

 int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column idenx of d_P and d_N

 int Col = blockIdx.x*blockDim.x+threadIdx.x;

 if ((Row < Width) && (Col < Width)) {

 float Pvalue = 0;

// each thread computes one element of the block sub-matrix

 for (int k = 0; k < Width; ++k)

 Pvalue += d_M[Row*Width+k]*
 d_N[k*Width+Col];

 d_P[Row*Width+Col] = Pvalue;

 }

} ©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

52

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing,

March 26-27, 2012

53

