
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

ICCS School

Advanced GPU Programming for Science

Lecture 3: Thread Coarsening

and More on Tiling/Blocking

1

Thread Coarsening

• Parallel execution sometimes requires doing

redundant memory accesses and/or calculations

– Merging multiple threads into one allows re-use of

result, avoiding redundant work

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012
Unique

Redundant

4-way

parallel

2-way

parallel

Time

2

Outline of Technique

• Merge multiple threads so each resulting thread

calculates multiple output elements

– Perform the redundant work once and save result into

registers

– Use register result to calculate multiple output

elements

• Merged kernel code will use more registers

– May reduce the number of threads allowed on an SM

– Increased efficiency may outweigh reduced

parallelism, especially if ample for given hardware

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

3

Register Tiling

• Registers

– extremely fast (short latency)

– do not require memory access instructions (high

throughput)

– But – private to each thread

– Threads cannot share computation results or loaded

memory data through registers

• With thread coarsening

– The computation from merged threads can now share

registers

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

4

STENCIL CODE EXAMPLE

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

5

Stencil Computation

• Describes the class of nearest neighbor

computations on structured grids.

• Each point in the grid is a weighted linear

combination of a subset of neighboring values.

• Optimizations and concepts covered : Improving

locality and Data Reuse

– 2D Tiling in Shared Memory

– Coarsening and Register Tiling

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

6

Stencil Computation

• High parallelism: Conceptually, all points in the

grid can be updated in parallel.

• Each computation performs a global sweep

through the data structure.

• Low computational intensity: High memory traffic

for very few computations.

• Base case: one thread calculates one point

• Challenge: Exploit parallelism without overusing

memory bandwidth

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

7

Memory Access Details

• General Equation:

• Separate read and write arrays.

• Mapping of arrays from 3D space to linear array

space.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

8

Coarsened implementation
• Each thread calculates a

one-element thin column

along the z-dimension

– Each block computes a

rectangular column along

the z-dimension

• Each thread loads all its

input elements for an

output point from global

memory, independently of

other threads

– High read redundancy,

heavy global memory traffic

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

9

Register Tiling

• Optimization – each

thread can reuse data

along the z-dimension

– The current center

input becomes the

bottom input

– The current top input

becomes the center

input

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

10

current

current

bottom

bottom

top

top

Savings of Coarsened Kernel

• Assume no data reuse along the z-direction

within each thread,

– A thread loads 7 input elements for each output

element.

• With data reuse within each thread,

– A thread loads 5 input elements for each output

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

11

Cross-Thread Data Reuse

• Each internal point is

used to calculate

seven output values

– self, 4 planar

neighbors, top and

bottom neighbors

• Surface, edge, and

corner points are used

for fewer output

values

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

12

y

x

Sample Coarsened Kernel Code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

13

i = bx * dx + tx;

j = by * dy + ty;

float bottom = Aorig[Index3D(Nx, Ny, i, j, 0)];

float current = Aorig[Index3D(Nx, Ny, i, j, 1)];

float top = Aorig[Index3D(Nx, Ny, i, j, 2)];

/* Nx and Ny: width of the grid in x and y directions, given as kernel arguments */

for (k=1, k < Nz-1, k++) {

 Anext[Index3D(Nx,Ny,i,j,0)] = bottom + top +

 (i==0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k) +

 (i==Nx-1)? 0: Aorig[Index3D(Nx, Ny, i+1, j, k) +

 (j==0)? 0: Aorig[Index3D(Nx, Ny, i, j-1, k) +

 (j==Ny-1)? 0: Aorig[Index3D(Nx, Ny, i, j+1, k) –

 6 * current / (fac * fac);

 bottom = current;

 current = top;

}

Improving Locality: 2D Tiling

• Assume that all threads of a block march up the

z-direction in synchronized phases

• In each phase, all threads calculate a 2-D slice of

the rectangular output column

• For each phase, maintain three slices of relevant

input data in the on-chip memories

– One top and one bottom element in each thread’s

private registers

– All current elements also in shared memory

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

14

Sample Coarsened Kernel Code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

15

__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

float bottom = Aorig[Index3D(Nx, Ny, i, j, 0)];

float current = Aorig[Index3D(Nx, Ny, i, j, 1)];

ds_A[threadIdx.y][threadIdx.x] = current;

float top = Aorig[Index3D(Nx, Ny, i, j, 2)];

for (k=1, k < Nz-1, k++) {

 Anext[Index3D(Nx,Ny,i,j,0)] = bottom + top +

 __synchthreads();

 bottom = current; ds_A[ty][tx] = current; current = top;

 __synchthreads()

}

Not all neighbors will be in the

shared memory

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

16
(tx > 0)? ds_A[ty][tx-1]: (i=0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k)

Not all neighbors will be in the

shared memory

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

17
(tx > 0)? ds_A[ty][tx-1]: (i=0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k)

Sample Coarsened Kernel Code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

18

__shared__ float ds_A[TILE_SIZE][TILE_SIZE];

float bottom = Aorig[Index3D(Nx, Ny, i, j, 0)];

float current = Aorig[Index3D(Nx, Ny, i, j, 1)];

ds_A[threadIdx.y][threadIdx.x] = current;

float top = Aorig[Index3D(Nx, Ny, i, j, 2)];

for (k=1, k < Nz-1, k++) {

 Anext[Index3D(Nx,Ny,i,j,0)] = bottom + top +

 (tx > 0)? ds_A[ty][tx-1]: (i=0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k) +

 (tx < dx)? ds_A[ty][tx+1]: (i=Nx-1)? 0: Aorig[Index3D(Nx, Ny, i+1, j, k) +

 (ty > 0)? ds_A[ty-1][tx]: (j=0)? 0: Aorig[Index3D(Nx, Ny, i, j-1, k) +

 (ty < dx)? ds_A[ty+1][tx]: (j=Ny-1)? 0: Aorig[Index3D(Nx, Ny, i, j+1, k) –

 6 * current / (fac * fac);

 bottom = current; ds_A[ty][tx] = current;

 current = top;

}

Cross-Thread Data Reuse

• Each internal point is

used to calculate

seven output values

– self, 4 planar

neighbors, top and

bottom neighbors

• Surface, edge, and

corner points are used

for fewer output

values

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

19

y

x

Improving Locality: 2D Tiling (cont.)

• From one phase to next, the kernel code

– Moves current element to register for lower element

– Moves top element from top register to current register

and shared memory

– Load new top element from Global Memory to register

• Need to deal with halo data

– Needed to calculate edge elements

 of the column

– For each 2D nxm tile slice to

 be computed, we need to load

 (n+2)x(m+2) - 4 inputs..
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

20

Loading halo elements can hurt.

• For small n and m, the halo overhead can be

very significant

– If n=16 and m = 8, each slice calculates 16*8=128

output elements in each slice and needs to load

(16+2)*(8+2) -4 =18*10=176 elements

– In coarsened code, each output element needs 5

loads from global memory, a total of 5*128=640 loads

– The total ratio of improvement is 640/176 = 3.6, rather

than 5 times

– The value of n and m are limited by the amount of

registers and shared memory in each SM

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

21

Another Approach

• One can load all halo cells into the shared

memory as well

• This would reduce the control divergence and

non-coalesced accesses at the calculation of

Anext.

• However, loading the halo cell will involve control

divergence and non-coalesced accesses.

• The net effect is usually not better (left as

homework).

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

22

In Fermi

• It is actually better not to load halo elements into

shared memory.

– The halo cells are most likely already loaded by

neighboring thread blocks as their core cells.

• The halo cells are often available in the L2 cache

anyway

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

23

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27, 2012

24

