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Thread Coarsening 

• Parallel execution sometimes requires doing 

redundant memory accesses and/or calculations 

– Merging multiple threads into one allows re-use of 

result, avoiding redundant work 
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Outline of Technique 

• Merge multiple threads so each resulting thread 

calculates multiple output elements 

– Perform the redundant work once and save result into 

registers 

– Use register result to calculate multiple output 

elements 

• Merged kernel code will use more registers 

– May reduce the number of threads allowed on an SM 

– Increased efficiency may outweigh reduced 

parallelism, especially if ample for given hardware 
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Register Tiling 

• Registers  

– extremely fast (short latency) 

– do not require memory access instructions (high 

throughput) 

– But – private to each thread 

– Threads cannot share computation results or loaded 

memory data through registers 

 

• With thread coarsening 

– The computation from merged threads can now share 

registers 
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STENCIL CODE EXAMPLE 
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Stencil Computation 

• Describes the class of nearest neighbor 

computations on structured grids. 

• Each point in the grid is a weighted linear 

combination of a subset of neighboring values. 

• Optimizations and concepts covered : Improving 

locality and Data Reuse 

– 2D Tiling in Shared Memory 

– Coarsening and Register Tiling 
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Stencil Computation 

• High parallelism: Conceptually, all points in the 

grid can be updated in parallel. 

• Each computation performs a global sweep 

through the data structure. 

• Low computational intensity: High memory traffic 

for very few computations. 

• Base case: one thread calculates one point 

• Challenge: Exploit parallelism without overusing 

memory bandwidth 
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Memory Access Details 

• General Equation: 

 

 

• Separate read and write arrays. 

• Mapping of arrays from 3D space to linear array 

space. 
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Coarsened implementation 
• Each thread calculates a 

one-element thin column 

along the z-dimension 

– Each block computes a 

rectangular column along 

the z-dimension 

 

• Each thread loads all its 

input elements for an 

output point from global 

memory, independently of 

other threads 

– High read redundancy, 

heavy global memory traffic 
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Register Tiling 

• Optimization – each 

thread can reuse data 

along the z-dimension 

– The current center 

input becomes the 

bottom input 

– The current top input 

becomes the center 

input 
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Savings of Coarsened Kernel  

• Assume no data reuse along the z-direction 

within each thread,  

– A thread loads 7 input elements for each output 

element. 

• With data reuse within each thread, 

– A thread loads 5 input elements for each output 
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Cross-Thread Data Reuse 

• Each internal point is 

used to calculate 

seven output values 

– self, 4 planar 

neighbors, top and 

bottom neighbors 

• Surface, edge, and 

corner points are used 

for fewer output 

values 
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Sample Coarsened Kernel Code 
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i = bx * dx + tx; 

j = by * dy + ty; 

float bottom = Aorig[Index3D(Nx, Ny, i, j, 0)]; 

float current = Aorig[Index3D(Nx, Ny, i, j, 1)]; 

float top       = Aorig[Index3D(Nx, Ny, i, j, 2)]; 

/* Nx and Ny: width of the grid in x and y directions, given as kernel arguments */ 

for (k=1, k < Nz-1, k++)  { 

 Anext[Index3D(Nx,Ny,i,j,0)] = bottom + top + 

    (i==0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k) + 

    (i==Nx-1)? 0: Aorig[Index3D(Nx, Ny, i+1, j, k) + 

    (j==0)? 0: Aorig[Index3D(Nx, Ny, i, j-1, k) + 

    (j==Ny-1)? 0: Aorig[Index3D(Nx, Ny, i, j+1, k) – 

    6 * current / (fac * fac); 

 bottom = current; 

 current = top; 

} 

    

 



Improving Locality: 2D Tiling 

• Assume that all threads of a block march up the 

z-direction in synchronized phases 

• In each phase, all threads calculate a 2-D slice of 

the rectangular output column 

• For each phase, maintain three slices of relevant 

input data in the on-chip memories 

– One top and one bottom element in each thread’s 

private registers 

– All current elements also in shared memory 
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Sample Coarsened Kernel Code 
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__shared__   float  ds_A[TILE_SIZE][TILE_SIZE]; 

float bottom = Aorig[Index3D(Nx, Ny, i, j, 0)]; 

float current = Aorig[Index3D(Nx, Ny, i, j, 1)]; 

ds_A[threadIdx.y][threadIdx.x] = current; 

float top       = Aorig[Index3D(Nx, Ny, i, j, 2)]; 

 

for (k=1, k < Nz-1, k++)  { 

 Anext[Index3D(Nx,Ny,i,j,0)] = bottom + top + 

   

 

 

 

  __synchthreads(); 

  bottom = current;     ds_A[ty][tx] = current; current = top; 

  __synchthreads() 

} 

    

 



Not all neighbors will be in the 

shared memory 
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(tx > 0)?   ds_A[ty][tx-1]:  (i=0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k) 



Not all neighbors will be in the 

shared memory 
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(tx > 0)?   ds_A[ty][tx-1]:  (i=0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k) 



Sample Coarsened Kernel Code 
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__shared__   float  ds_A[TILE_SIZE][TILE_SIZE]; 

float bottom = Aorig[Index3D(Nx, Ny, i, j, 0)]; 

float current = Aorig[Index3D(Nx, Ny, i, j, 1)]; 

ds_A[threadIdx.y][threadIdx.x] = current; 

float top       = Aorig[Index3D(Nx, Ny, i, j, 2)]; 

 

for (k=1, k < Nz-1, k++)  { 

 Anext[Index3D(Nx,Ny,i,j,0)] = bottom + top + 

   (tx > 0)?   ds_A[ty][tx-1]:  (i=0)? 0: Aorig[Index3D(Nx, Ny, i-1, j, k) + 

   (tx < dx)? ds_A[ty][tx+1]: (i=Nx-1)? 0: Aorig[Index3D(Nx, Ny, i+1, j, k) + 

   (ty > 0)?   ds_A[ty-1][tx]:  (j=0)? 0: Aorig[Index3D(Nx, Ny, i, j-1, k) + 

   (ty < dx)? ds_A[ty+1][tx]: (j=Ny-1)? 0: Aorig[Index3D(Nx, Ny, i, j+1, k) – 

    6 * current / (fac * fac); 

 bottom = current;     ds_A[ty][tx] = current; 

 current = top; 

} 

    

 



Cross-Thread Data Reuse 

• Each internal point is 

used to calculate 

seven output values 

– self, 4 planar 

neighbors, top and 

bottom neighbors 

• Surface, edge, and 

corner points are used 

for fewer output 

values 
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Improving Locality: 2D Tiling (cont.) 

• From one phase to next, the kernel code 

– Moves current element to register for lower element 

– Moves top element from top register to current register 

and shared memory 

– Load new top element from Global Memory to register 

• Need to deal with halo data 

– Needed to calculate edge elements 

    of the column 

– For each 2D  nxm tile slice to  

     be computed, we need to load 

      (n+2)x(m+2) - 4 inputs..  
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Loading halo elements can hurt. 

• For small n and m, the halo overhead can be 

very significant 

– If n=16 and m = 8, each slice calculates 16*8=128 

output elements in each slice and needs to load 

(16+2)*(8+2) -4 =18*10=176 elements 

– In coarsened code, each output element needs 5 

loads from global memory, a total of 5*128=640 loads 

– The total ratio of improvement is 640/176 = 3.6, rather 

than 5 times 

– The value of n and m are limited by the amount of 

registers and shared memory in each SM 
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Another Approach 

• One can load all halo cells into the shared 

memory as well 

• This would reduce the control divergence and 

non-coalesced accesses at the calculation of 

Anext. 

• However, loading the halo cell will involve control 

divergence and non-coalesced accesses. 

• The net effect is usually not better (left as 

homework). 
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In Fermi 

• It is actually better not to load halo elements into 

shared memory. 

– The halo cells are most likely already loaded by 

neighboring thread blocks as their core cells. 

• The halo cells are often available in the L2 cache 

anyway 
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ANY MORE QUESTIONS? 
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