
©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

ICCS School

Advanced GPU Programming for Science

Lecture 4:

Scatter to Gather Transformation

1

A Common Sequential Computation

Pattern

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Double

Nested

Loop

iterate over output

iterate over input

in

out

2

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

for (m = 0; m < M; m++) {

 for (n = 0; n < N; n++) {

 out[n] += f(in[m], m, n);

 }

}

A Simple Code Example

• Input data in
– M = # scan points

• Output data out
– N = # regularized

scan points

• Complexity is
O(MN)

Gridding1

kx

ky

kx

ky

3

Scatter Parallelization

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Thread 1

Thread 2 …

in

out

iterate over output

4

Scatter can be very slow.

• All threads have conflicting updates to the same

out elements

– Serialized with atomic operations

– Very costly (slow) for large number of threads

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

+

*

+ + + ……

Time

+

*

+ + + ……

All threads atomically update out[0] All threads atomically update out[1]

5

Atomic Operations on DRAM

• Each Load-Modify-Store has two full memory

access delays

– All atomic operations on the same variable (RAM

location) are serialized

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

DRAM delay DRAM delay

transfer delay

internal routing
DRAM delay

transfer delay

internal routing

..

atomic operation N atomic operation N+1

time

6

Hardware Improvements

• Atomic operations on Shared Memory

– Very short latency, but still serialized

– Private to each thread block

– Need algorithm work by programmers (more later)

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

internal routing

..

atomic operation N atomic operation N+1

time

data transfer

7

Hardware Improvements (cont.)

• Atomic operations on Fermi L2 cache

– medium latency, but still serialized

– Global to all blocks

– “Free improvement” on Global Memory atomics

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

internal routing

..

atomic operation N atomic operation N+1

time

data transfer data transfer

8

Gather Parallelization

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Thread 1

Thread 2 …

in

out

9

Gather can be very fast.

• All threads can read the same in elements

– No serialization

– Can even be efficiently consolidated through caches

or local memories

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

+

*

+

+

+

…

Time

All threads update their

own out elements +

*

+

+

+

+

*

+

+

+

10

Why is scatter parallelization often

used rather than gather?

• In practice, each in element does not affect all out

elements

• Output tends to be much more regular than input

– Input usually comes as sparse data structure, where

coordinates are part of the data

– One needs to look at the input data to see if an input is

relevant to an output value

– Output is usually a regular, grid

– Given an input value, one can find output via index

calculation

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

kx

ky

11

Why is scatter parallelization often

used rather than gather?

• It is easy to calculate all out elements affected by

an in element

– Harder to calculate all in elements that affect an out

– Easy thread kernel code if written in scatter

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

kx

ky

12

Challenges in Gather Parallelization

• Regularize input elements so that it is easier to

find all in elements that affects an out element

– Input Binning Lecture

• Can be even more challenging if data is highly

non-uniform

– Cut-off Binning for Non-Uniform Data Lecture

• For this lecture, we assume that all in elements

affect all out elements

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

13

Electrostatic Potential Map

• Calculate initial electrostatic potential map

around the simulated structure considering the

contributions of all atoms

– Most time consuming, focus of our example.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Lattice point

being evaluated

14

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Overview of Direct Coulomb

Summation (DCS) Algorithm
• One way to compute the electrostatic potentials on a grid,

ideally suited for the GPU

– All atoms affect all map lattice points, most accurate

• For each lattice point, sum potential contributions for all

atoms in the simulated structure:

 potential += charge[i] / (distance to atom[i])

• Approximation-based methods such as cut-off summation

can achieve much higher performance at the cost of

some numerical accuracy and flexibility

– Will cover these later

15

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Direct Coulomb Summation (DCS)

Algorithm Detail

• At each lattice point, sum potential contributions

for all atoms in the simulated structure:

 potential += charge[i] / (distance to atom[i])

Atom[i]

Distance to

Atom[i]
Lattice point

being evaluated

16

Electrostatic Potential Map

Calculation Function Overview

• Each call calculates an x-y slice of the energy map

– energygrid – pointer to the entire potential map

– grid – the x, y, z dimensions of the potential map

– gridspacing – modeled physical dist between grid points

– atoms – array of x, y, z coordinates and charge of atoms

– numatoms – number of atoms in atoms array

void cenergy(float *energygrid, dim3 grid, float

gridspacing, float z, const float *atoms, int

numatoms) {}

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

17

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

 int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

 float dz2 = dz*dz;

 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

 float charge = atoms[n+3];

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 float dy = y - atoms[n+1]; // all grid points in a row have the same y value

 float dy2 = dy*dy;

 int grid_row_offset = grid_slice_offset+ grid.x*j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float dx = x - atoms[n];

 energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

 }

 }

 } }

Input oriented

18

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

 int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

 float dz2 = dz*dz;

 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

 float charge = atoms[n+3];

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 float dy = y - atoms[n+1]; // all grid points in a row have the same y value

 float dy2 = dy*dy;

 int grid_row_offset = grid_slice_offset+ grid.x*j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float dx = x - atoms[n];

 energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

 }

 }

 } }

19

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

 int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

 float dz2 = dz*dz;

 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

 float charge = atoms[n+3];

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 float dy = y - atoms[n+1]; // all grid points in a row have the same y value

 float dy2 = dy*dy;

 int grid_row_offset = grid_slice_offset+ grid.x*j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float dx = x - atoms[n];

 energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

 }

 }

 } }

20

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

 int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

 float dz2 = dz*dz;

 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

 float charge = atoms[n+3];

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 float dy = y - atoms[n+1]; // all grid points in a row have the same y value

 float dy2 = dy*dy;

 int grid_row_offset = grid_slice_offset+ grid.x*j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float dx = x - atoms[n];

 energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

 }

 }

 } }

21

Summary of Sequential C Version

• Algorithm is input oriented

– For each input atom, calculate its contribution to all

grid points in an x-y slice

• Output (energygrid) is very regular

– Simple linear mapping between grid point indices and

modeled physical coordinates

• Input (atom) is irregular

– Modeled x,y,z coordinate of each atom needs to be

stored in the atom array

• The algorithm is efficient in performing minimal

calculations on distances, coordinates, etc.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

22

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Irregular Input vs. Regular Output

• Atoms come from
modeled molecular
structures, solvent
(water) and ions

– Irregular by necessity

• Energy grid models
the electrostatic
potential value at
regularly spaced
points

– Regular by design

23

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

CUDA DCS Implementation

Overview
• Allocate and initialize potential map memory on host CPU

• Allocate potential map slice buffer on GPU

• Preprocess atom coordinates and charges

• Loop over potential map slices:

– Copy potential map slice from host to GPU

– Loop over groups of atoms:

• Copy atom data to GPU

• Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host

• Free resources

24

Straightforward CUDA Parallelization

• Use each thread to compute the contribution of

an atom to all grid points in the current slice

– Scatter parallelization

• Kernel code largely correspond to intuitive CPU

version with outer loop stripped

– Each thread corresponds to an outer loop iteration of

CPU version

– numatoms used in kernel launch configuration host

code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

25

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing,

float z) {

 int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4;

 float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

 float dz2 = dz*dz;

 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

 float charge = atoms[n+3];

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 float dy = y - atoms[n+1]; // all grid points in a row have the same y value

 float dy2 = dy*dy;

 int grid_row_offset = grid_slice_offset+ grid.x*j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float dx = x - atoms[n];

 energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2));

 }

 }

 }

}

26

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing,

float z) {

 int n = (blockIdx.x * blockDim .x + threadIdx.x) *4;

 float dz = z - atoms[n+2]; // all grid points in a slice have the same z value

 float dz2 = dz*dz;

 int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;

 float charge = atoms[n+3];

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 float dy = y - atoms[n+1]; // all grid points in a row have the same y value

 float dy2 = dy*dy;

 int grid_row_offset = grid_slice_offset+ grid.x*j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float dx = x - atoms[n];

 energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2));

 }

 }

 }

}

Needs to be done as

an atomic operation

27

Pros and Cons of the Scatter

Kernel

• Pros

– Follows closely the simple CPU version

– Good for software engineering and code maintenance

– Preserves computation efficiency (coordinates,

distances, offsets) of sequential code

• Cons

– The atomic add serializes the execution, very slow!

– Not even worth trying this yourself.

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

28

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

 int atomarrdim = numatoms * 4;

 int k = z / gridspacing;

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float energy = 0.0f;

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dx = x - atoms[n];

 float dy = y - atoms[n+1];

 float dz = z - atoms[n+2];

 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

 }

 energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

 }

 }

}

Output oriented.

29

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

 int atomarrdim = numatoms * 4;

 int k = z / gridspacing;

 for (int j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 for (int i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float energy = 0.0f

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dx = x - atoms[n];

 float dy = y - atoms[n+1];

 float dz = z - atoms[n+2];

 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

 }

 energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

 }

 }

}

More redundant work.

30

Pros and Cons of the Slower

Sequential Code

• Pros

– Fewer access to the energygrid array

– Simpler code structure

• Cons

– Many more calculations on the coordinates

– More access to the atom array

– Overall, much slower sequential execution due to the

sheer number of calculations performed

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

31

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

DCS CUDA Block/Grid Decomposition
(no register tiling)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:

64-256 threads

Threads compute

1 potential each

32

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float

*atoms, int numatoms) {

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int j = blockIdx.y * blockDim.y + threadIdx.y;

 int atomarrdim = numatoms * 4;

 int k = z / gridspacing;

 float y = gridspacing * (float) j;

 float x = gridspacing * (float) i;

 float energy = 0.0f;

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dx = x - atoms[n];

 float dy = y - atoms[n+1];

 float dz = z - atoms[n+2];

 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

 }

 energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

One thread per grid point

33

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float

*atoms, int numatoms) {

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int j = blockIdx.y * blockDim.y + threadIdx.y;

 int atomarrdim = numatoms * 4;

 int k = z / gridspacing;

 float y = gridspacing * (float) j;

 float x = gridspacing * (float) i;

 float energy = 0.0f;

 for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dx = x - atoms[n];

 float dy = y - atoms[n+1];

 float dz = z - atoms[n+2];

 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

 }

 energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

All threads access all atoms.

Consolidated writes to grid points

34

Additional Comments

• Further optimizations

– dz*dz can be pre-calculated and sent in place of z

• Gather kernel is much faster than a scatter

kernel

– No serialization due to atomic operations

• Compute efficient sequential algorithm does not

translate into the fast parallel algorithm

– Gather vs. scatter is a big factor

– But we will come back to this point later!

 ©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

35

Even More Comments

• In modern CPUs, cache effectiveness is often

more important than compute efficiency

• The input oriented (scatter) sequential code

actually has very bad cache performance

– energygrid[] is a very large array, typically 20X or

more larger than atom[]

– The input oriented sequential code sweeps through

the large data structure for each atom, trashing cache.

• The fastest sequential code is actually an

optimized output oriented code

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

36

Outline of A Fast Sequential Code

for all z {

 for all atoms {precompute dz2 }

 for all y {

 for all atoms {precompute dy2 (+ dz2) }

 for all x {

 for all atoms {

 compute contribution to current x,y,z point

 using precomputed dy2 and dz2

 }

 } } }

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

37

More Thoughts on Fast Sequential

Code

• Need temporary arrays for pre-calculated dz2

and dy2 + dz2 values

• So, why does this code has better cache behaior

on CPUs?

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

38

QUESTIONS?

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

39

Reduction – A Degenerate Case

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Double

Nested

Loop

iterate over in

in

out

40

There is no output parallelism!

• There is only one output

• But scatter style code is not acceptable

– Each threads reads one input and accumulate into

one reduction variable with atomic operation

– All input threads write to ONE output location

• Tree reduction makes more sense

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

41

©Wen-mei W. Hwu and David Kirk/ NVIDIA, Beijing, March 26-27

Solution – Create Multiple Outputs

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10

42

