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Lecture 4: 

Scatter to Gather Transformation 
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A Common Sequential Computation 

Pattern 
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Double 

Nested 

Loop 

iterate over output 

iterate over input 

in 

out 
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for (m = 0; m < M; m++) { 

 

  for (n = 0; n < N; n++) { 

 

    out[n] += f(in[m], m, n); 

  } 

}  

A Simple Code Example 

• Input data in 
– M = # scan points 

 

• Output data out 
– N = # regularized 

scan points 

 

• Complexity is 
O(MN) 

 

Gridding1 

kx

ky

kx

ky
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Scatter Parallelization 
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Thread 1 

 

Thread 2 … 

in 

out 

iterate over output 
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Scatter can be very slow. 

• All threads have conflicting updates to the same 

out elements 

– Serialized with atomic operations 

– Very costly (slow) for large number of threads 
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Atomic Operations on DRAM 

• Each Load-Modify-Store has two full memory 

access delays  

– All atomic operations on the same variable (RAM 

location) are serialized 

©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, March 26-27 
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Hardware Improvements 

• Atomic operations on Shared Memory 

– Very short latency, but still serialized 

– Private to each thread block 

– Need algorithm work by programmers (more later) 
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Hardware Improvements (cont.) 

• Atomic operations on Fermi L2 cache 

– medium latency, but still serialized 

– Global to all blocks 

– “Free improvement” on Global Memory atomics 
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Gather Parallelization 
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Thread 1 

 

Thread 2 … 

in 

out 

9 



Gather can be very fast. 

• All threads can read the same in elements 

– No serialization 

– Can even be efficiently consolidated through caches 

or local memories 
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Why is scatter parallelization often 

used rather than gather? 

• In practice, each in element does not affect all out 

elements 

• Output tends to be much more regular than input 

– Input usually comes as sparse data structure, where 

coordinates are part of the data 

– One needs to look at the input data to see if an input is 

relevant to an output value 

– Output is usually a regular, grid 

– Given an input value, one can find output via index 

calculation 
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Why is scatter parallelization often 

used rather than gather? 

• It is easy to calculate all out elements affected by 

an in element 

– Harder to calculate all in elements that affect an out 

– Easy thread kernel code if written in scatter 
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Challenges in Gather Parallelization 

• Regularize input elements so that it is easier to 

find all in elements that affects an out element 

– Input Binning Lecture 

• Can be even more challenging if data is highly 

non-uniform 

– Cut-off Binning for Non-Uniform Data Lecture 

 

• For this lecture, we assume that all in elements 

affect all out elements 
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Electrostatic Potential Map 

• Calculate initial electrostatic potential map 

around the simulated structure considering the 

contributions of all atoms 

– Most time consuming, focus of our example. 
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Lattice point 

being evaluated 
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Overview of Direct Coulomb 

Summation (DCS) Algorithm 
• One way to compute the electrostatic potentials on a grid, 

ideally suited for the GPU 

– All atoms affect all map lattice points, most accurate 

 

• For each lattice point, sum potential contributions for all 

atoms in the simulated structure:  

   potential +=  charge[i] / (distance to atom[i]) 

 

• Approximation-based methods such as cut-off summation 

can achieve much higher performance at the cost of 

some numerical accuracy and flexibility 

– Will cover these later 
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Direct Coulomb Summation (DCS) 

Algorithm Detail 

• At each lattice point, sum potential contributions 

for all atoms in the simulated structure:  

   potential +=  charge[i] / (distance to atom[i]) 

Atom[i] 

Distance to 

Atom[i] 
Lattice point 

being evaluated 
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Electrostatic Potential Map 

Calculation Function Overview 

• Each call calculates an x-y slice of the energy map 

– energygrid – pointer to the entire potential map 

– grid – the x, y, z dimensions of the potential map 

– gridspacing – modeled physical dist between grid points 

– atoms – array of x, y, z coordinates and charge of atoms 

– numatoms – number of atoms in atoms array 

void cenergy(float *energygrid, dim3 grid, float 

gridspacing, float z, const float *atoms, int 

numatoms) {} 
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An Intuitive Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) { 

  int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom 

  for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

    float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value 

    float dz2 = dz*dz; 

    int grid_slice_offset = (grid.x*grid.y*z) / gridspacing; 

    float charge = atoms[n+3]; 

    for (int j=0; j<grid.y; j++) { 

      float y = gridspacing * (float) j; 

      float dy = y - atoms[n+1];  // all grid points in a row have the same y value 

      float dy2 = dy*dy; 

      int grid_row_offset =  grid_slice_offset+ grid.x*j; 

      for (int i=0; i<grid.x; i++) { 

         float x = gridspacing * (float) i; 

         float dx = x - atoms[n    ]; 

         energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2); 

      } 

    } 

  } } 

Input oriented  
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An Intuitive Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) { 

  int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom 

  for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

    float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value 

    float dz2 = dz*dz; 

    int grid_slice_offset = (grid.x*grid.y*z) / gridspacing; 

    float charge = atoms[n+3]; 

    for (int j=0; j<grid.y; j++) { 

      float y = gridspacing * (float) j; 

      float dy = y - atoms[n+1];  // all grid points in a row have the same y value 

      float dy2 = dy*dy; 

      int grid_row_offset =  grid_slice_offset+ grid.x*j; 

      for (int i=0; i<grid.x; i++) { 

         float x = gridspacing * (float) i; 

         float dx = x - atoms[n    ]; 

         energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2); 

      } 

    } 

  } } 

19 



©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, March 26-27 

An Intuitive Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) { 

  int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom 

  for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

    float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value 

    float dz2 = dz*dz; 

    int grid_slice_offset = (grid.x*grid.y*z) / gridspacing; 

    float charge = atoms[n+3]; 

    for (int j=0; j<grid.y; j++) { 

      float y = gridspacing * (float) j; 

      float dy = y - atoms[n+1];  // all grid points in a row have the same y value 

      float dy2 = dy*dy; 

      int grid_row_offset =  grid_slice_offset+ grid.x*j; 

      for (int i=0; i<grid.x; i++) { 

         float x = gridspacing * (float) i; 

         float dx = x - atoms[n    ]; 

         energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2); 

      } 

    } 

  } } 
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An Intuitive Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) { 

  int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom 

  for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

    float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value 

    float dz2 = dz*dz; 

    int grid_slice_offset = (grid.x*grid.y*z) / gridspacing; 

    float charge = atoms[n+3]; 

    for (int j=0; j<grid.y; j++) { 

      float y = gridspacing * (float) j; 

      float dy = y - atoms[n+1];  // all grid points in a row have the same y value 

      float dy2 = dy*dy; 

      int grid_row_offset =  grid_slice_offset+ grid.x*j; 

      for (int i=0; i<grid.x; i++) { 

         float x = gridspacing * (float) i; 

         float dx = x - atoms[n    ]; 

         energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2); 

      } 

    } 

  } } 
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Summary of Sequential C Version 

• Algorithm is input oriented 

– For each input atom, calculate its contribution to all 

grid points in an x-y slice 

• Output (energygrid) is very regular 

– Simple linear mapping between grid point indices and 

modeled physical coordinates 

• Input (atom) is irregular 

– Modeled x,y,z coordinate of each atom needs to be 

stored in the atom array 

• The algorithm is efficient in performing minimal 

calculations on distances, coordinates, etc. 
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Irregular Input vs. Regular Output 

• Atoms come from 
modeled molecular 
structures, solvent 
(water) and ions 

– Irregular by necessity 

 

• Energy grid models 
the electrostatic 
potential value at 
regularly spaced 
points 

– Regular by design 

23 



©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, March 26-27 

CUDA DCS Implementation 

Overview 
• Allocate and initialize potential map memory on host CPU 

• Allocate potential map slice buffer on GPU 

• Preprocess atom coordinates and charges 

• Loop over potential map slices: 

– Copy potential map slice from host to GPU 

– Loop over groups of atoms: 

• Copy atom data to GPU 

• Run CUDA Kernel on atoms and potential map slice on GPU 

– Copy potential map slice from GPU to host 

• Free resources 
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Straightforward CUDA Parallelization 

• Use each thread to compute the contribution of 

an atom to all grid points in the current slice 

– Scatter parallelization 

• Kernel code largely correspond to intuitive CPU 

version with outer loop stripped 

– Each thread corresponds to an outer loop iteration of 

CPU version 

– numatoms used in kernel launch configuration host 

code 
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A Very Slow DCS Scatter Kernel! 
void  __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing, 

float z) { 

    int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4; 

    float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value 

    float dz2 = dz*dz; 

    int grid_slice_offset = (grid.x*grid.y*z) / gridspacing; 

    float charge = atoms[n+3]; 

    for (int j=0; j<grid.y; j++) { 

      float y = gridspacing * (float) j; 

      float dy = y - atoms[n+1];  // all grid points in a row have the same y value 

      float dy2 = dy*dy; 

      int grid_row_offset =  grid_slice_offset+ grid.x*j; 

      for (int i=0; i<grid.x; i++) { 

         float x = gridspacing * (float) i; 

         float dx = x - atoms[n    ]; 

         energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx + dy2+ dz2)); 

      } 

    } 

  } 

} 
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A Very Slow DCS Scatter Kernel! 
void  __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing, 

float z) { 

    int n = (blockIdx.x * blockDim .x + threadIdx.x) *4; 

    float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value 

    float dz2 = dz*dz; 

    int grid_slice_offset = (grid.x*grid.y*z) / gridspacing; 

    float charge = atoms[n+3]; 

    for (int j=0; j<grid.y; j++) { 

      float y = gridspacing * (float) j; 

      float dy = y - atoms[n+1];  // all grid points in a row have the same y value 

      float dy2 = dy*dy; 

      int grid_row_offset =  grid_slice_offset+ grid.x*j; 

      for (int i=0; i<grid.x; i++) { 

         float x = gridspacing * (float) i; 

         float dx = x - atoms[n    ]; 

         energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx + dy2+ dz2)); 

      } 

    } 

  } 

} 

Needs to be done as 

an atomic operation 
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Pros and Cons of the Scatter 

Kernel 

• Pros 

– Follows closely the simple CPU version 

– Good for software engineering and code maintenance 

– Preserves computation efficiency (coordinates, 

distances, offsets) of sequential code 

 

• Cons 

– The atomic add serializes the execution, very slow! 

– Not even worth trying this yourself. 
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A Slower Sequential C Version  
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) { 

  

  int atomarrdim = numatoms * 4; 

  int k = z / gridspacing; 

  for (int j=0; j<grid.y; j++) { 

    float y = gridspacing * (float) j; 

    for (int i=0; i<grid.x; i++) { 

      float x = gridspacing * (float) i; 

      float energy = 0.0f; 

      for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

        float dx = x - atoms[n    ]; 

        float dy = y - atoms[n+1]; 

        float dz = z - atoms[n+2]; 

        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 

      } 

      energygrid[grid.x*grid.y*k + grid.x*j + i] += energy; 

    } 

  } 

} 

Output oriented. 
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A Slower Sequential C Version  
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) { 

  

  int atomarrdim = numatoms * 4; 

  int k = z / gridspacing; 

  for (int j=0; j<grid.y; j++) { 

    float y = gridspacing * (float) j; 

    for (int i=0; i<grid.x; i++) { 

      float x = gridspacing * (float) i; 

      float energy = 0.0f 

      for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

        float dx = x - atoms[n    ]; 

        float dy = y - atoms[n+1]; 

        float dz = z - atoms[n+2]; 

        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 

      } 

      energygrid[grid.x*grid.y*k + grid.x*j + i] += energy; 

    } 

  } 

} 

More redundant work. 
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Pros and Cons of the Slower 

Sequential Code 

• Pros 

– Fewer access to the energygrid array 

– Simpler code structure 

 

• Cons 

– Many more calculations on the coordinates  

– More access to the atom array  

– Overall, much slower sequential execution due to the 

sheer number of calculations performed 
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DCS CUDA Block/Grid Decomposition  
(no register tiling) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… … … 

Thread blocks:  

64-256 threads 

Threads compute 

1 potential each 

32 



©Wen-mei W. Hwu and David  Kirk/ NVIDIA, Beijing, March 26-27 

A Fast DCS CUDA Gather Kernel 
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float 

*atoms, int numatoms) { 

  

  int i = blockIdx.x * blockDim.x + threadIdx.x; 

  int j = blockIdx.y * blockDim.y + threadIdx.y; 

  int atomarrdim = numatoms * 4; 

  int k = z / gridspacing; 

  float y = gridspacing * (float) j; 

  float x = gridspacing * (float) i; 

  float energy = 0.0f; 

  for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

        float dx = x - atoms[n    ]; 

        float dy = y - atoms[n+1]; 

        float dz = z - atoms[n+2]; 

        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 

      } 

   energygrid[grid.x*grid.y*k + grid.x*j + i] += energy; 

} 

One thread per grid point 
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A Fast DCS CUDA Gather Kernel 
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float 

*atoms, int numatoms) { 

  

  int i = blockIdx.x * blockDim.x + threadIdx.x; 

  int j = blockIdx.y * blockDim.y + threadIdx.y; 

  int atomarrdim = numatoms * 4; 

  int k = z / gridspacing; 

  float y = gridspacing * (float) j; 

  float x = gridspacing * (float) i; 

  float energy = 0.0f; 

  for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

        float dx = x - atoms[n    ]; 

        float dy = y - atoms[n+1]; 

        float dz = z - atoms[n+2]; 

        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 

      } 

   energygrid[grid.x*grid.y*k + grid.x*j + i] += energy; 

} 

All threads access all atoms. 

Consolidated writes to grid points 
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Additional Comments 

• Further optimizations 

– dz*dz can be pre-calculated and sent in place of z 

 

• Gather kernel is much faster than a scatter 

kernel 

– No serialization due to atomic operations 

 

• Compute efficient sequential algorithm does not 

translate into the fast parallel algorithm 

– Gather vs. scatter is a big factor 

– But we will come back to this point later! 
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Even More Comments 

• In modern CPUs, cache effectiveness is often 

more important than compute efficiency 

• The input oriented (scatter) sequential code 

actually has very bad cache performance 

– energygrid[] is a very large array, typically 20X or 

more larger than atom[] 

– The input oriented sequential code sweeps through 

the large data structure for each atom, trashing cache. 

• The fastest sequential code is actually an 

optimized output oriented code 
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Outline of A Fast Sequential Code 

for all z { 

  for all atoms {precompute dz2 } 

  for all y { 

     for all atoms {precompute dy2 (+ dz2) } 

     for all x { 

        for all atoms { 

        compute contribution to current x,y,z point 

           using precomputed dy2 and dz2 

            }  

      }   }   } 
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More Thoughts on Fast Sequential 

Code 

• Need temporary arrays for pre-calculated dz2 

and dy2 + dz2 values 

• So, why does this code has better cache behaior 

on CPUs?  
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QUESTIONS? 
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Reduction – A Degenerate Case 
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Double 

Nested 

Loop 

iterate over in 

in 

out 
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There is no output parallelism! 

• There is only one output 

 

• But scatter style code is not acceptable  

– Each threads reads one input and accumulate into 

one reduction variable with atomic operation  

– All input threads write to ONE output location 

 

• Tree reduction makes more sense 
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Solution – Create Multiple Outputs 

0 1 2 3 4 5 7 6 10 9 8 11 

0+1 2+3 4+5 6+7 10+11 8+9 

0...3 4..7 8..11 

0..7 8..15 

1 

2 

3 

Array elements  

iterations 

Thread 0 Thread 8 Thread 2 Thread 4 Thread 6 Thread 10 
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