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Objective 

• To understand how data scalability problems in 

gather parallel execution motivate input binning 

• To learn basic input binning techniques 

• To understand common tradeoffs in input binning  
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However 

• Input tends to be much less regular than output 

– It may be difficult for each thread to efficiently locate 

all inputs relevant to its output 

– Or, to efficiently exclude all inputs irrelevant to its 

output 

• In a naïve arrangement, all threads may have to 

process all inputs to decide if each input is 

relevant to its output 

– This makes execution time scale poorly with data set 

size – data scalability problem 

– Especially a problem for many-cores designed to 

process large data sets 
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DCS Algorithm for Electrostatic Potentials 

Revisited 

• At each grid point, sum 

the electrostatic 

potential from all atoms 

– All threads read all inputs 

• Highly data-parallel 

• But has quadratic 

complexity 

– Number of grid points  

number of atoms 

– Both proportional to volume 

– Poor data scalability in 

terms of volume 
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Algorithm for Electrostatic Potentials 

With a Cutoff 

• Ignore atoms beyond a 

cutoff distance, rc 

– Typically 8Å–12Å 

– Long-range potential may 

be computed separately 

• Number of atoms within 

cutoff distance is 

roughly constant 

(uniform atom density) 

– 200 to 700 atoms within 

8Å–12Å cutoff sphere for 

typical biomolecular 

structures 
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Cut-off Summation  

• With fixed partial charge qi, electrostatic potential 

V at position r over all N atoms:  

, where 
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Same scalability 
among all cutoff 
implementations 

Scalability and Performance of different algorithms for calculating 

electrostatic potential map. 

Direct Summation is accurate but has 

poor data scalability 
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Implementation Challenge 

• For each tile of grid points, we need to identify 

the set of atoms that need to be examined 

– One could naively examine all atoms and only use the 

ones whose distance is within the given range  

– But this examination still takes time, and brings the 

time complexity right back to  

• number of atoms * number of grid points 

– Each thread needs to avoid examining the atoms 

outside the range of its grid point(s) 
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Binning 

• A process that groups data to form a chunk 

called bin 

• Each bin collectively represents a property for 

data in the bin 

• Helps problem solving due to data coarsening 

• Uniform bin arrays, Variable bins, KD Trees, … 
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Binning for Cut-Off Potential 

• Divide the simulation volume with non-

overlapping uniform cubes 

• Every atom in the simulation volume falls into a 

cube based on its spatial location 

– Bins represent location property of atoms 

• After binning, each cube has a unique index in 

the simulation space for easy parallel access 
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Spatial Sorting Using Binning 

• Presort atoms into bins 

by location in space 

• Each bin holds several 

atoms 

• Cutoff potential only 

uses bins within rc 

– Yields a linear complexity 

cutoff potential algorithm 

– Some atoms will be 

examined by a thread but 

not used 
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Terminology 

• Bin Size 

– The size of the bin cubes that partition the simulation 

volume 

– The bigger the bin size, the more the atoms that will 

fall into each bin 

 

• Bin Capacity 

– The number of atoms that can be accommodated by 

each bin in the array implementation 
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Bin Design 

• Uniform sized/capacity bins allow array implementation 

– And the relative offset list approach 

• Bin capacity should be big enough to contain most of the 

atoms that fall into a bin (> 95%) 

– Cut-off will screen away atoms that weren’t processed 

– Performance penalty if too many are screened away 
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Bin Capacity Considerations 

• Capacity of atom bins needs to be balanced 

– Too large – many dummy atoms in bins 

– Too small – some atoms will not fit into bins 

– Target bin capacity to cover more than 95% or atoms 

 

• Place all atoms that do not fit into bins into an 

overflow bin 

– Use a CPU sequential algorithm to calculate their 

contributions to the energy grid lattice points. 

– CPU and GPU can do potential calculations in parallel 
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Small-bin Kernels – Work Efficiency 

• Thread block examines atom bins 
up to the cutoff distance 

– Use a sphere of bins 

– All threads in a block scan the same 
bins and atoms 

• No hardware penalty for multiple 
simultaneous reads of the same address 

• Simplifies fetching of data 

– The sphere has to be big enough to 
cover all grid points at corners 

– There will be a small level of  
divergence 

• Not all grid points processed by a thread 
block relate to all atoms in a bin the 
same way 

• (A within cut-off distance of N but outside 
cut-off of M) 
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The Neighborhood is a volume 

• Calculating and 

specifying all bin 

indexes of the 

sphere can be 

quite complex 

– Rough 

approximations 

reduce efficiency 
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Neighborhood Offset List 
(Pre-calculated) 

• A list of relative offsets enumerating the bins that 

are located within the cutoff distance for a given 

location in the simulation volume 

• Detection of surrounding atoms becomes 

realistic for output grid points 

– By visiting bins in the neighborhood offset list and 

iterating atoms they contain 

center (0, 0) 

(2, 1) 

not included 

cutoff distance 

(-1, -1) 

a bin in the 

neighborhood list 
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Pseudo Code of an Implementation 
// 1. binning 

for each atom in the simulation volume, 

    index_of_bin := atom.addr / BIN_SIZE 

    bin[index_of_bin] += atom 

 

// 2. generate the neighborhood offset list 

for each c from -cutoff to cutoff, 

    if distance(0, c) < cutoff, 

        nlist += c 

 

// 3. do the computation 

for each point in the output grid, 

    index_of_bin := point.addr / BIN_SIZE 

    for each offset in nlist, 

        for each atom in bin[index_of_bin + offset], 

            point.potential += atom.charge / (distance from point to atom) 
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Performance 

• O(MN’) where M and N’ are the number of output 

grid points and atoms in the neighborhood offset 

list, respectively 

– In general, N’ is small compared to the number of all 

atoms 

• Works well if the distribution of atoms is uniform 
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Details on Small Bin Design 

• For 0.5Å lattice spacing, a 
(4Å)3 cube of the potential 
map is computed by each 
thread block 

– 888 potential map points 

– 128 threads per block       
(4 points/thread) 

– Using the same cube bin 
size 34% of examined 
atoms are within cutoff 
distance 
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Another thread block runs 

while this one waits 

Tiling Atom Data 

• Shared memory used to reduce Global 
Memory bandwidth consumption 
– Threads in a thread block collectively load one bin 

at a time into shared memory 

– Once loaded, threads scan atoms in shared 
memory 

– Reuse: Loaded bins used 128 times 

Threads individually 

compute potentials 

using bin in shared mem 

Collectively 

load next 

bin 

Write bin to 

shared 

memory S
u
s
p
e
n
d

 
Data returned 

from global 

memory R
e
a
d
y
 

Time 

Execution cycle of a thread block 
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Coalesced Global Memory Access 

to Atom Data 

• Full global memory bandwidth only with 64-
byte, 64-byte-aligned memory accesses 

– Each bin is exactly 128 bytes 

– Bins stored in a 3D array 

– 32 threads in each block load one bin into shared 
memory, then processed by all threads in the block 

• 128 bytes = 8 atoms (x,y,z,q) 

– Nearly uniform density of atoms in typical systems 
• 1 atom per 10 Å3 

– Bins hold atoms from (4Å)3 of space (example)  

– Number of atoms in a bin varies 
• For water test systems, 5.35 atoms in a bin on average 

• Some bins overfull 
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Handling Overfull Bins 

• In typical use, 2.6% of atoms exceed bin capacity 

• Spatial sorting puts these into a list of extra 
atoms 

• Extra atoms processed by the CPU 
– Computed with CPU-optimized algorithm 

– Takes about 66% as long as GPU computation 

– Overlapping GPU and CPU computation yields in 
additional speedup 

– CPU performs final integration of grid data 
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Cutoff Summation Runtime 

50k–1M atom structure size 

GPU cutoff with 

CPU overlap: 

12x-21x faster 

than CPU core 
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QUESTIONS? 
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