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1-ST  YEAR  PLANS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

1) Developing of a new GPU-based method for hybrid N-body/TVD approach 
(teams: UGR) Implementation of FFT GPU libraries for particle-mesh part of the code. Comparison 
of the new code with the parallel Tree-SPH code in terms of scalability, acceleration and accuracy. 
Design of the dynamic equilibrium of self-gravitating accretion disc model around supermassive black 
hole at time scales up to 10^8 yr. 
2) Construction of equilibrium monotonic stellar models of spheroids within the 
black hole influence zone (team: R) Stability analysis requires self-consistent equilibrium 
models of stellar systems. Construction of such models is a separate problem unless the system 
geometry is spherically symmetric or razor flat. 
3) Study of the possibility of gLCI in models in near-harmonic potentials away 
from the black hole (teams: UGR) According to theory, gLCI is possible when the orbit 
precession is retrograde, while the LC is a growing function of angular momentum. Polyachenko et al. 
(2010b) considered unstable DFs with polynomial dependence from angular momentum. With the use 
of numerical simulations, we plan to provide examples of realistic models subject to gLCI. 
4) Study of methods for detection of unstable modes (teams: GR) Although different 
codes may provide similar final results of the evolution, some essential details can be missed. For 
example, relatively high level of Poisson noise typical for Tree-Code schemes can make it difficult to 
detect some stages of structure formation in stellar systems. Careful study of the most adequate 
numerical scheme for detection of unstable modes in disc and spherical systems, as well as 
techniques for its detection is needed. 2
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2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Black hole potential — spherical symmetry

�(r) = �GMC

r

DF — axial symmetry

Non-self-consistent models

F0(E,Lz, I3) ) F0(E,Lz, L) L ⇡ const

Potential produced by the cluster is neglected  

��(r, ✓) ⌧ �(r)
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2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Non-self-consistent models — Example 1

5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.0001
0.001
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065
0.07

n = 4F = An�(E � E0)L
n
z

Volume density:

⇢(r, ✓) = Bn
M

R3
⇥

⇥
⇣ r

R
sin ✓

⌘n⇣R
r
� 1

⌘(n+1)/2



2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Non-self-consistent models — Example 2
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Volume density:
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2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Non-self-consistent models — Example 2
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2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Axisymmetric potential

How DF is transformed? No problem for 

Self-consistent models

In case of the near-Keplerian potentials, the DF   

�(r) = �GMC

r
+ ��(r, ✓)
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F0(E,Lz)

F0(E,Lz, I3)

can be constructed by perturbation theory using canonical transformation   



2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Delaunay variables (B&T, Appendix E):

Usual action-angle variables:

Self-consistent models
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(J1, J2, J3;w1, w2, w3)

(I1, I2, I3;W1,W2,W3)

I1 = Ir, I2 = L� |Lz|, I3 = Lz

I1 = J1 � J2, I2 = J2 � |J3|, J3 = I3

Hamiltonian:

H = � (GMC)2

2(I1 + I2 + |I3|)2
= � (GMC)2

2(Ir + L2)
= � (GMC)2

2J2
1



2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Self-consistent models

10

Hamiltonian:

H = � (GMC)2

2(I1 + I2 + |I3|)2
= � (GMC)2

2(Ir + L2)
= � (GMC)2

2J2
1

Angular momentum:

L = J2

Goal:   find                                         when H transforms to �J2 = J 0
2 � J2

H ) H 0 = H + h, h = �� / ✏ ⇠ M/MC ⌧ 1



2) SPHEROIDS IN NEAR-K POTENTIALS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Self-consistent models
Generating function:

S(w0,J) = w0 · J+ s(w0,J), s(w0,J) = O(✏)

�L(E,L, Lz; r, ✓) = �J2 =
4

⌦1

l
maxX

l=0

Tl

1X

l
1

=1

X

l
2

>0,

l
2

even

(l2/l1)⇥

⇥
h
�A
l1l2 cos(l1w1) cos(l2w2)� �B

l1l2 sin(l1w1) sin(l2w2)

i

E0 = E + ��(r, ✓), L0 ⌘ J 0
2 = L+�L, L0

z = Lz

Corrections:
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1-ST  YEAR  PLANS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

1) Developing of a new GPU-based method for hybrid N-body/TVD approach 
(teams: UGR) Implementation of FFT GPU libraries for particle-mesh part of the code. Comparison 
of the new code with the parallel Tree-SPH code in terms of scalability, acceleration and accuracy. 
Design of the dynamic equilibrium of self-gravitating accretion disc model around supermassive black 
hole at time scales up to 10^8 yr. 
2) Construction of equilibrium monotonic stellar models of spheroids within the 
black hole influence zone (team: R) Stability analysis requires self-consistent equilibrium 
models of stellar systems. Construction of such models is a separate problem unless the system 
geometry is spherically symmetric or razor flat. 
3) Study of the possibility of gLCI in models in near-harmonic potentials away 
from the black hole (teams: UGR) According to theory, gLCI is possible when the orbit 
precession is retrograde, while the LC is a growing function of angular momentum. Polyachenko et al. 
(2010b) considered unstable DFs with polynomial dependence from angular momentum. With the use 
of numerical simulations, we plan to provide examples of realistic models subject to gLCI. 
4) Study of methods for detection of unstable modes (teams: GR) Although different 
codes may provide similar final results of the evolution, some essential details can be missed. For 
example, relatively high level of Poisson noise typical for Tree-Code schemes can make it difficult to 
detect some stages of structure formation in stellar systems. Careful study of the most adequate 
numerical scheme for detection of unstable modes in disc and spherical systems, as well as 
techniques for its detection is needed.



3) LOSS CONE INST., NEAR-HARMONIC P. 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Polynomial model

13

F = N�(E � E0)↵
n , ↵ ⌘ L/Lcirc

⇢ = Cnx
n(1� x

2)(n+1)/2
, x ⌘ r/R

�0(r) =
⌦2

0r
2

2
+ �G(r)

G = MG = R = 1 , ⌦0 = 10

Timescales:

DF:

Volume density:

Potential (near-h + self-g):

Units:

t1 ⇠ ⌦�1
0 = 0.1 , t2 ⇠ (✏⌦0)

�1 = 10 , ✏ ⌘ GMG

R3⌦2
0



3) LOSS CONE INST., NEAR-HARMONIC P. 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Polynomial model - theoretical predictions

 0

 0.05

 0.1

 0.15

 0.2

 0.5  1  1.5  2  2.5  3

ω
I [
εΩ

0]

n

l=2 mode

14



3) LOSS CONE INST., NEAR-HARMONIC P. 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Polynomial model - N-body experiments  (200K)
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3) LOSS CONE INST., NEAR-HARMONIC P. 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

Polynomial model - N-body experiments  (1M)
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THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Radial equilibrium:

R⌦2(R) =
d

dR
[�0(R) + h0(R)]

Linear perturbations:

�i!⇤vR � 2⌦v✓ = � d

dR
(�+ h)

�i!⇤v✓ +
2

2⌦
vR = � im

R
(�+ h)

h = c2s
⌃

⌃0

�i!⇤⌃+
1

R

d

dR
(R⌃0vR) +

im⌃0

R
v✓ = 0

!⇤ ⌘ ! �m⌦



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Standard approach (no self-grav., finite boundaries):

d

dr
(c2s⌘) =

2m⌦

r!⇤
(c2s⌘)� (2 � !2

⇤)⇠

d

dr
(rH0⇠) = �rH0

✓
1� m2c2s

r2!2
⇤

◆
⌘ +

2m⌦

r!⇤
⇠

�

⇠ = �i!⇤vR

Boundary conditions — rigid walls:

⇠ = 0

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Standard approach (no self-grav., finite boundaries) — angular velocity

Analytic solution:

⌘(r) = C1H
(1)
m (kr) + C2H

(2)
m (kr) k2 =

!2
⇤ � 4⌦2

c2s

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Standard approach (self-grav., infinite outer boundary):

Radiation boundary conditions

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Goal (see also P., 2005 for stellar discs): !x = Ax

Method: finite elements

f(R) !
NX

j=0

Fj �j

x ⌘ [U0, ..., UN , V0, ..., VN , S0, ..., SN ]T

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Unknown frequency is in the l.h.s only:

!vR = m⌦vR + 2i⌦v✓ � i
d

dR

⇣
Ĥm⌃

⌘

!v✓ = �i
2

2⌦
vR +m⌦v✓ +

m

R
Ĥm⌃

!⌃ = � ı

R

d

dR
(R⌃0vR) +

m⌃0

R
v✓ +m⌦⌃

Ĥm⌃ ⌘ (Ĝm + c2s/⌃0)⌃ = (�+ h)

What about boundary conditions?

!Mx = Lx

A = M�1L

GPU!

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Example I — “Kelvin-Helmholtz and over-reflection instability”
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THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
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Example II — “Exactly solvable model” (Hunter 1963, Shukhman)

⌃0(R) = ⌃⇤⇠ , ⇠ ⌘
h
1�R2/a2

i1/2

�0(R) =
⌦2

DR
2

2
, ⌦2

D =
⇡2G⌃⇤
2a

Surface density:

Potential:

Pressure law:

p0(R) =
1

3
⌃⇤c

2
⇤⇠

3

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Example II — eigenmodes

Eigenfunctions of surface density:

Eigenvalues are obtained from the cubic DR:

⌃n(R) = ⌃⇤
Pm
n (⇠)

⇠
eim✓

1 =
c2⇤/a

2 � 4�m
n ⌦2

D

!2
⇤ � 4⌦2

✓
n2 + n�m2 � 2m

!⇤

◆

�m
n =

(n+m)!(n�m)!

22n+1

✓
n+m

2

◆
!

✓
n�m

2

◆
!

�2 , n = 2, 4, 6, ...

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS
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Example II — Convergence on N and β to  0.5 + 0.61237244i 

Ν 103Δ3 103Δ4 103Δ5

4 8.7+29i 4.5+16i 1.7+2.4i

8 5.2+6.7i 4.4+14i 2.1+4.1i

16 2.4-13i 4.6+8.7i 2.8+4.2i

32 0.84-17i 2.7+4.0i 2.5+5.1i

64 0.68-15i 0.26-1.6i 1.4+3.8i

128 0.43-16i 0.008-2.2i 0.41+1.2i

256 0.36-16i 0.012-2.1i -0.06-0.4i

512 0.32-16i -0.016-2.3i -0.03-0.33i

1024 0.26-16i -0.08-2.5i -0.09-0.58i

� lg �

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
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Example II — numerical and exact Q dependence
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THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
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Example III — cored exponential model (galactic disc)

�0(R) = v20 ln
q
1 +R2/R2

C

⌃D(R) = ⌃s exp

h
� �

q
1 +R2/R2

C

i
, � ⌘ RC

RD

Surface density:

Potential:

The stellar dynamical model F0(E,L) has 3 parameters

�R ⇡ v0/(2N)1/2

Units and adopted parameters:

G = v0 = RC = 1 N = 6, � = 0.625, ⌃s = 0.34

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
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Example III — velocity and some other essential profiles
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THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
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Example III — eigenmodes, various Rout

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 
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Example III — major patterns

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 

R[0.9690,0.0885] A[0.4260,0.0445] B[0.4152,0.0683]

C[0.3265,0.0127] D[0.3178,0.0883] E[0.2550,0.0680]
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Example III — propagation diagrams (enhanced WKB, Bertin+89)

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 

 0

 5

 10

-10 -5  0  5  10

R
/R

D

k

corotation

Lindblad resonance

Ωp=0.2

 0

 5

 10

-10 -5  0  5  10

R
/R

D

k

Ωp=0.7

I
k(!R, R)dR = (2n+ 1)⇡ !�1

I /
I

dr

|cg|
,



CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

34

Example III — major eigenmodes v.s. Q

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 

Earlier predicted value for flat r.c. (Polyachenko+, 1997): 

Qmin =
p
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Example III — minor eigenmodes v.s. Rout

THE LINEAR EIGENVALUE PROBLEM FOR GAS DISCS 

Swing amplified outer modes? Presumably yes  
When Rout is increased from 10Rd to 20Rd ; 
• frequency range corresponds to the max of SA growth; 
• travel time for wave packets increased by factor 2.33; 
• growth rates dropped by factor 2.28; 
•  ΔΩ dropped by factor 2.31
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1-ST  YEAR  SUMMARY 
CODE DEVELOPMENT. FULL GPU INTEGRATION TO THE CODES. LINEAR THEORY PREDICTIONS

1) (#2 “Spheroids, I3”)   theoretical part, numerical part in progress (exp.: fall 2017) 
2) (#3 “Loss cone inst.”)   negative results. Publication? 
3) (#4 “Mode’s detection”)   used everywhere - no separate publication. 
4) Papers with acknowledgements to the project: 

• Polyachenko E., Berczik P., Just A. On the bar formation mechanism in galaxies with cuspy 
bulges // MNRAS, vol. 462, Issue 4, p.3727-3738 // arXiv:1601.06115 

• Polyachenko E., Berczik P., Just A. Bar formation in the Milky Way type galaxies // Baltic 
Astronomy, vol. 25, No. 4, pp 411-418 // arXiv:1702.01646 

• Polyachenko E. Swing amplification and global modes reciprocity in models with cusps // Baltic 
Astronomy, vol. 25, No. 3, pp 288-295 // arXiv:1608.01776 

• Polyachenko E.V., Shukhman I.G. Radial orbit instability in systems of highly eccentric orbits: 
Antonov problem reviewed // MNRAS, accepted  May 24 (2017) // arXiv:1705.09150 

• Polyachenko E.V., Shukhman I.G. Instability of stationary spherical models with orbits arbitrarily 
close to radial // Baltic Astronomy, vol. 25, No. 4, p. 362-368 

• Polyachenko E.V. The linear eigenvalue problem for barotropic selfgravitating discs // MNRAS, 
submitted  May 08 (2017) // arXiv:170X.XXXXX
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2-ND  YEAR  PLANS 
N-BODY/HYDRODYNAMIC SIMULATIONS

1) Self-consistent N-body/hydrodynamical simulations of the AD imbedded in the 
nuclear stellar cluster (teams: UGR) Implementation of the AD heating due to interaction of 
the stellar population of NSC. Calculation of the accretion rate on to the BH due to dynamical friction 
of stars with the AD matter. Comparison of the results with the previous studies and linear theory 
predictions (Just et al 2012). Calibration of the BH accretion rate with various subgrid models 
(Springel et al. 2005; Okamoto et al. 2008; Debuhr et al. 2011). 
2) Theoretical analysis of the possible angular momentum distributions of the 
stellar clusters (teams: GR) Dependence of the stellar distribution function (DF) on the angular 
momentum is essential for stability. In early numerical experiments only monotonic DFs were studied 
(e.g., Cohn, Kulsrud 1978). However, we expect that non-monotonic distributions are also feasible. If a 
cluster is formed as a result of the collisionless collapse, then it remains collisionless until the 
collisional relaxation will take over (see, e.g., Merritt & Wang, 2005). Thus in principle, the system can 
have almost arbitrary DF both in the energy and in the angular momentum. We wish to analyze the 
variety of possible distributions over angular momentum in evolutionary models. 
3) Numerical simulations of the possible angular momentum distributions of the 
stellar clusters (teams: UG) The same as in task 2, but using numerical simulations. 
4) Study of the possibility of the loss cone instability for spherical systems in near-
Keplerian potentials (teams: UGR) Theory gives constrains on the possible unstable spherical 
harmonics and width of the loss cone. Using tasks 2 and 3, we shall try to present reasonable 
stationary initial conditions that promote gLCI.


