# Progress of high performance simulations of an accretion disk surrounding a supermassive black hole

### Fabian Klein <sup>1</sup>, Rainer Spurzem <sup>123</sup>, Andreas Just <sup>1</sup>, Rolf Kuiper<sup>4</sup>

<sup>1</sup>Astronomisches Rechen-Institut, Zentrum für Astronomie Heidelberg, Universität Heidelberg, Mönchhof-Straße 12-14, D-69120 Heidelberg, Germany

<sup>2</sup>National Astronomical Observatories of China, Chinese Academy of Sciences, NAOC/CAS, 20A Datun Rd., Chaoyang District, Beijing 100012, China

<sup>3</sup>The Kavli Institute for Astronomy and Astrophysics at Peking University

<sup>4</sup>Universität Tübingen, Institut für Astronomie und Astrophysik, Abt. Computational Physics, Auf der Morgenstelle 10, 72076 Tübingen, German

#### 31st of May 2017

### Introduction

- Modeling and Initial conditions
- First results
- Benchmarks
- Conclusions

### **STARDISK**

Simulations of an SMBH in an AGN with the surrounding star-cluster(Nbody, see [Just et al., 2012, Kennedy et al., 2016]) Accretion disk of black hole uses modified Shakura-Sunyaev model (No Simulation) Result: Accretion rate increased by presence of Accretion disk

### My contribution

Hydrodynamical simulation of the disk instead of just enforcing model.

Interactions of Disk with Star-cluster, mutual feedback

Calculation of star-crossings(heating expected)

# STARDISK project



Figure: Artist's impression of a super massive black hole with an accretion disk, Image credit: NASA/JPL-Caltech

# STARDISK project



Figure: Figure illustrating the STARDISK situation, Drawing by Gareth F. Kennedy, modifications by Bekdaulet Shukirgaliyev

# Status of STARDISK, focused on Disk-Model

### Paper I

### [Just et al., 2012]

- Stationary Keplerian rotating disk
- Disk has constant thickness
- Star accretion rate enhanced by STARDISK interaction compared to pure stellar dynamics

### Paper II

### [Kennedy et al., 2016]

- Linear thickness in R compared to constant thickness
- Detailed orbit analysis

# $\alpha~{\rm disks}$

### Foundations

[Novikov and Thorne, 1973, Shakura and Sunyaev, 1973]

- Assume turbulent disk with turbulent velocity  $v_{\rm T}$
- $\bullet\,$  model effect of magnetic field H by viscosity tensor  $\sigma\,$
- Amount of turbulence(compare to speed of sound c<sub>S</sub><sup>2</sup>) determines angular momentum transport by viscosity

$$\alpha = \frac{v_{\rm T}}{c_{\rm S}} + \frac{H^2}{4\pi\rho c_{\rm S}^2}$$

### Details

- Generally  $\alpha < 1$
- Different regions by  $p_{\rm rad}$  in comparison to  $p_{\rm gas}$
- Process of opacity Thompson scattering, free-free
- Only  $\sigma_{R\varphi} = \alpha \rho c_{S}$  relevant

(1)

#### Features

- Predicts radial and to some degree *z* profiles for density, temperature etc.
- Is able to partly explain AGN spectra
- Is theoretically implied to work for non-self-gravitating disks with local MHD turbulences [Balbus and Papaloizou, 1999]
- Radiation transport, radiation pressure, viscosity and hydrodynamics necessary
- $\bullet$  Accretion flow and rate determined by  $\alpha$  parameter

# Governing equations

- Need: modified Navier-stokes equations of hydrodynamics
- Ideal equation of state is used to close the system  $p = \rho \sigma_{\rm rms}^2 = \rho \frac{k_{\rm B}}{\mu_{\rm mol} m_{\rm H}} T$ , also used to initialise temperature
- Radiation transport included in Flux-Limited-diffusion limit
- Currently: Region such that self-gravity can be neglected

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
(1)
$$\frac{\partial \mathbf{m}}{\partial t} + \nabla (\mathbf{m} \cdot \mathbf{v}) + \nabla \rho - \nabla \sigma = \rho \mathbf{g} + \rho \frac{\kappa}{c} \mathbf{F}$$
(2)
$$\frac{\partial E}{\partial t} + \nabla (E \mathbf{v}) + \nabla (\rho \mathbf{v}) - \nabla \cdot (\sigma \mathbf{v}) = \mathbf{m} \cdot \mathbf{g} + \rho \frac{\kappa}{c} \mathbf{v} \cdot \mathbf{F} + \rho c \kappa (a T^4 - E_R)$$
(3)
$$\frac{\partial E_R}{\partial t} + \nabla \cdot (E_R \mathbf{v}) = -\nabla \cdot \mathbf{F} - \rho c \kappa (a T^4 - E_R)$$
(4)

Equilibrium conditions derived from force Equilibrium [Lodato, 2008].  $v_r = v_{\vartheta} = 0.0$ .

- Employ finite volume grid based code PLUTO [Mignone et al., 2007]
- Use self-gravity and radiation transport modules as well more PLUTO additions developed by Rolf Kuiper [Kuiper et al., 2010]
- Make use of heavy MPI parallelisation provided by PLUTO and the modules

### Units

Chosse M31 as given in [Kennedy et al., 2016]

$$egin{aligned} M_{\mathsf{BH}} &= 1.5 imes 10^8 \, \mathsf{M}_\odot \ M_{\mathsf{Disk}} &= 1.5 imes 10^7 \, \mathsf{M}_\odot \end{aligned}$$

### Grid

- Spherical coordinates r,  $\theta$ ,  $\varphi$
- Logarithmic grid in r, uniform in  $\theta$  and  $\varphi$

 $r \in [0.11\,\mathrm{pc}, 2.95\,\mathrm{pc}]$ ,  $heta \in [0.472\,\pi, 0.527\,\pi]$ ,  $arphi \in [0,2\pi]$ 

# Grid and Units

### Grid

- Spherical coordinates r,  $\theta,\,\varphi$
- Logarithmic grid in  ${\it r},$  uniform in  $\theta$  and  $\varphi$

 $r \in [0.11\,{
m pc}, 2.95\,{
m pc}], \ heta \in [0.472\,\pi, 0.527\,\pi], \ arphi \in [0,2\pi]$ 



Figure: View from above on r,  $\varphi$  grid

### Parameter collection

• 
$$R_{\rm SW} = rac{2GM_{\rm BH}}{c^2} pprox 3.589 imes 10^{-5} \, {
m pc}$$
 Schwartzschild radius

- $M_{\rm CI} = 1.5 imes 10^9 \, {
  m M}_{\odot}$  Nuclear Star Cluster Mass
- $M_{
  m BH} = 1.5 imes 10^8 \, {
  m M}_{\odot}$  Black Hole Mass
- $M_{
  m d} = 1.5 imes 10^7 \, {
  m M}_{\odot}$  Total Disk Mass
- $R_{\rm d} = 25 \, {\rm pc}$  Outermost radius of the disk
- $R_{sg} = \left(\frac{1}{2-\rho} \frac{M_{BH}}{M_d} h_z R_d^{2-\rho}\right)^{\frac{1}{3-\rho}} \approx 2.95 \, \text{pc}$  Self-gravity radius, starting from which self-gravity is important

• 
$$h_z = 1.0 imes 10^{-3} R_{
m d} = 0.025 \, 
m pc$$
 Scale heigth

•  $h(R) = \begin{cases} \frac{h_z}{R_{sg}}R & \text{if } R < R_{sg} \\ h_z & \text{else} \end{cases}$  Linearly varying scale height in

BH gravity dominated area

$$R=r\sin\theta$$
 cylindrical radius,  $T_{
m K,\ inner}=2.93 imes10^2$  yrs,  $T_{
m K,\ outer}=3.88 imes10^4$  yrs

# Current initial conditions

First Goal: Equilibrium initial conditions  $\Rightarrow$  Stationary disk Derive stationary state from system of equations in 3 spatial dimensions [Lodato, 2008, Just et al., 2012, Kennedy et al., 2016].

$$p(r, heta) = 
ho_{R_{0
ho}} \left(rac{r}{R_{0
ho}}
ight)^{eta_{
ho}} \exp\left(-rac{\cos^2 heta}{2a_{R_{0as}}^2}\left(rac{r}{R_{0as}}
ight)^{-2y_{as}}
ight)^{\gamma}$$
 $v_{arphi} = r\sin heta\sqrt{rac{GM_{
m BH}}{r^3}}\sqrt{\left(1+rac{eta_{
ho}+eta_{
m T}}{\gamma_{
m gas}}rac{h^2}{r^2\sin^2 heta}
ight)^{\gamma}}$ 
 $c_{
m S} = rac{h}{r\sin heta}v_{arphi} \quad p = rac{1}{\gamma_{
m gas}}c_{
m S}^2
ho$ 

We always choose  $y_{as} = 0$ ,  $a = \frac{h}{R}$ . Also, I infer  $\rho_{min} = 1.0 \times 10^{-23} \text{ g cm}^{-3} (6 \text{H cm}^{-3})$ , Currently freezing in region with lower density initially.

# Current initial conditions



# Boundary conditions



- Beginning: Outflow no inflow, End Outflow no inflow
- Zero gradient in v<sub>r</sub>
- $v_{\varphi}$ : Modified Keplerian gradient towards computational domain

#### $\varphi$

#### Periodic for end and beginning

Modified Keplerian gradient towards computational domain(example r):

Loop over all cells of the boundary zone, 2 cells in r extended over entire  $\theta$  and  $\varphi$ .

$$v_{\varphi}' = v_{\varphi} \sqrt{\frac{r_{\text{outermost}}}{r_{\text{current}}}}$$
(5)

Limit speed to modified Keplerian speed

$$v_{\varphi}^{\prime\prime} = \mathsf{Min}(v_{\varphi}^{\prime}, v_{\mathsf{K, modified}}) \tag{6}$$

Start with 2D test,  $\alpha = 5.0 \times 10^{-2}$ , everything apart from self-gravity activated. Runs fine up to at least  $5 \times 10^5$  yrs



 $\rho$ [1.00e-15 $\frac{g}{cm^3}$ ] t = 0.00e + 00

#### Initial conditons



 $\rho$ [1.00e-15 $\frac{g}{cm^3}$ ] t = 1.00e + 04

#### Initial oscillations



 $\rho[1.00\text{e-}15\frac{\text{g}}{\text{cm}^3}] \ t = 4.20e + 05$ 

### Equilibrium



### Radiation pressure dominates



 $p_{rad}[9.56e+06\frac{dyne}{cm^2}] t = 4.20e+05$ 

### Radiation pressure dominates



 $-E_{\text{pot}}[9.56e+06\frac{\text{erg}}{\text{cm}^3}] t = 4.20e+05$ 

### Greater than potential energy



T[1.00e+00K] t = 4.20e + 05

#### Temperature unchanged



#### Shock in low density area

# Problem: Too high radiation pressure causes explosion



Explosion from much higher pressure in system

# Idea: Reduce initial pressure by factor of 3



Results in thinner disk

# Idea: Reduce initial pressure by factor of 3



Somewhat better, but still direct crash

Assume density profile and ideal eos, calculate Temperature

$$p = \rho \frac{k_{\rm B} T}{\mu m_{\rm H}}$$
(7)  
$$\beta = \frac{p_{\rm gas}}{p_{\rm rad}} = \rho \frac{k_{\rm B} T}{\mu m_{\rm H}} \frac{3}{a_{\rm rad} T^4}$$
(8)  
$$T_{\rm crit} = \sqrt[3]{\frac{1}{\beta} \rho \frac{3k_{\rm B}}{\mu m_{\rm H} a_{\rm rad}}}$$
(9)

### Determination of critical temperature



### Radiation pressure equilibrium

$$\frac{\partial p_{rad}}{\partial r} = -\rho \frac{GM}{r^2}$$
(7)  

$$4a_{rad} T^3 \frac{\partial T}{\partial r} = -\rho \frac{GM}{r^2}$$
(8)  

$$T(r) = \sqrt[4]{\frac{a_{rad} c_1 r + \rho GM}{a_{rad} r}}$$
(9)  

$$c_1 = \frac{a_{rad} T_0^4 r_0 - GM \rho(r_0, \theta)}{a_{rad} r_0}$$
(10)

Assume  $c_1 = 0.0$ , Trying to get it via boundary, some negative values

# Radiation pressure equilibrium



# Radiation pressure equilibrium



with  $c_1$  chosen such that  $T(0.11 \,\mathrm{pc}) = 1.0 imes 10^6 \,\mathrm{K}$ 

- Disk goes to equilibrium, stable for long periods of time
- Radiation pressure very high, theoretically cannot be ignored.
- Causes explosion, no equilibrium any more
- Self-Gravity needs to be tested



Strong scaling OK, problem with weak scaling

- Slowly progress to 3D simulation
- Do some benchmarks
- Extend to region where self-gravity is important
- Introduce heating due to star-crossings and interactions
- Determine spectra from radiation transport results
- Far goal: Include Hydrodynamical simulation in N-Body simulation

# Thank you for your attention!

[0] Balbus, S. A. and Papaloizou, J. C. B. (1999). On the Dynamical Foundations of  $\alpha$  Disks. *Astrophysical Journal*, 521:650–658.

 Just, A., Yurin, D., Makukov, M., Berczik, P., Omarov, C., Spurzem, R., and Vilkoviskij, E. Y. (2012).
 Enhanced Accretion Rates of Stars on Supermassive Black Holes by Star-Disk Interactions in Galactic Nuclei. *The Astrophysical Journal*, 758:51.

 Kennedy, G. F., Meiron, Y., Shukirgaliyev, B., Panamarev, T., Berczik, P., Just, A., and Spurzem, R. (2016).
 Star-disc interaction in galactic nuclei: orbits and rates of accreted stars.

Monthly Notices of the Royal Astronomical Society, 460:240–255.

[0] Kuiper, R., Klahr, H., Beuther, H., and Henning, T. (2010). Circumventing the Radiation Pressure Barrier in the Formation of Massive Stars via Disk Accretion.

Astrophysical Journal, 722:1556–1576.

[0] Lodato, G. (2008).
 Classical disc physics.
 New Astronomy Review, 52:21–41.

[0] Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., and Ferrari, A. (2007).

PLUTO: A Numerical Code for Computational Astrophysics. *The Astrophysical Journal Supplement Series*, 170:228–242.

[0] Novikov, I. D. and Thorne, K. S. (1973). Astrophysics of black holes.
In Dewitt, C. and Dewitt, B. S., editors, *Black Holes (Les Astres Occlus)*, page 343–450.  Shakura, N. I. and Sunyaev, R. A. (1973).
 Black holes in binary systems. Observational appearance. Astronomy & Astrophysics, 24:337–355.