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31st of May 2017
Fabian Klein Progress of high performance simulations of an accretion disk 1/22



Table of Contents

Introduction

Modeling and Initial conditions

First results

Benchmarks

Conclusions

Fabian Klein Progress of high performance simulations of an accretion disk 2/22



General project

STARDISK

Simulations of an SMBH in an AGN with the surrounding
star-cluster(Nbody, see [Just et al., 2012, Kennedy et al., 2016])
Accretion disk of black hole uses modified Shakura-Sunyaev model
(No Simulation)
Result: Accretion rate increased by presence of Accretion disk

My contribution

Hydrodynamical simulation of the disk instead of just enforcing
model.
Interactions of Disk with Star-cluster, mutual feedback
Calculation of star-crossings(heating expected)
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STARDISK project

Figure: Artist’s impression of a super massive black hole with an
accretion disk, Image credit: NASA/JPL-Caltech
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STARDISK project

Figure: Figure illustrating the STARDISK situation, Drawing by Gareth F.
Kennedy, modifications by Bekdaulet Shukirgaliyev
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Status of STARDISK, focused on Disk-Model

Paper I

[Just et al., 2012]

Stationary Keplerian rotating disk

Disk has constant thickness

Star accretion rate enhanced by STARDISK interaction
compared to pure stellar dynamics

Paper II

[Kennedy et al., 2016]

Linear thickness in R compared to constant thickness

Detailed orbit analysis
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α disks

Foundations

[Novikov and Thorne, 1973, Shakura and Sunyaev, 1973]

Assume turbulent disk with turbulent velocity vT

model effect of magnetic field H by viscosity tensor σ

Amount of turbulence(compare to speed of sound c2
S)

determines angular momentum transport by viscosity

α =
vT

cS
+

H2

4πρc2
S

(1)

Details

Generally α < 1

Different regions by prad in comparison to pgas

Process of opacity Thompson scattering, free-free

Only σRϕ = αρcS relevant
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α disks

Features

Predicts radial and to some degree z profiles for density,
temperature etc.

Is able to partly explain AGN spectra

Is theoretically implied to work for non-self-gravitating disks
with local MHD turbulences [Balbus and Papaloizou, 1999]

Radiation transport, radiation pressure, viscosity and
hydrodynamics necessary

Accretion flow and rate determined by α parameter
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Governing equations

Need: modified Navier-stokes equations of hydrodynamics

Ideal equation of state is used to close the system
p = ρσ2

rms = ρ kB
µmolmH

T , also used to initialise temperature

Radiation transport included in Flux-Limited-diffusion limit

Currently: Region such that self-gravity can be neglected

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂m

∂t
+∇ (m · v) +∇p−∇σ = ρg + ρ

κ

c
F (2)

∂E

∂t
+∇ (Ev) +∇ (pv)−∇ · (σv) = m · g + ρ

κ

c
v · F + ρcκ(aT 4 − ER)

(3)

∂ER

∂t
+∇ · (ERv) = −∇ · F− ρcκ(aT 4 − ER) (4)

Equilibrium conditions derived from force Equilibrium [Lodato, 2008]. vr = vϑ = 0.0.
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Used Code

Employ finite volume grid based code PLUTO
[Mignone et al., 2007]

Use self-gravity and radiation transport modules as well more
PLUTO additions developed by Rolf Kuiper
[Kuiper et al., 2010]

Make use of heavy MPI parallelisation provided by PLUTO
and the modules
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Grid and Units

Units

Chosse M31 as given in [Kennedy et al., 2016]

MBH = 1.5× 108 M�

MDisk = 1.5× 107 M�

Grid

Spherical coordinates r , θ, ϕ

Logarithmic grid in r , uniform in θ and ϕ

r ∈ [0.11 pc, 2.95 pc], θ ∈ [0.472π, 0.527π], ϕ ∈ [0, 2π]
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Grid and Units
Grid

Spherical coordinates r , θ, ϕ

Logarithmic grid in r , uniform in θ and ϕ

r ∈ [0.11 pc, 2.95 pc], θ ∈ [0.472π, 0.527π], ϕ ∈ [0, 2π]

Figure: View from above on r , ϕ grid
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Parameter collection

RSW = 2GMBH
c2 ≈ 3.589× 10−5 pc Schwartzschild radius

MCl = 1.5× 109 M� Nuclear Star Cluster Mass

MBH = 1.5× 108 M� Black Hole Mass

Md = 1.5× 107 M� Total Disk Mass

Rd = 25 pc Outermost radius of the disk

Rsg =
(

1
2−p

MBH
Md

hzR
2−p
d

) 1
3−p ≈ 2.95 pc Self-gravity radius,

starting from which self-gravity is important

hz = 1.0× 10−3Rd = 0.025 pc Scale heigth

h(R) =

{
hz
Rsg

R if R < Rsg

hz else
Linearly varying scale height in

BH gravity dominated area

R = r sin θ cylindrical radius, TK, inner = 2.93× 102 yrs,
TK, outer = 3.88× 104 yrs
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Current initial conditions

First Goal: Equilibrium initial conditions ⇒ Stationary disk
Derive stationary state from system of equations in 3 spatial
dimensions [Lodato, 2008, Just et al., 2012, Kennedy et al., 2016].

ρ(r , θ) = ρR0ρ

(
r

R0ρ

)βρ
exp

(
−cos2 θ

2a2
R0as

(
r

R0as

)−2yas
)

vϕ = r sin θ

√
GMBH

r3

√(
1 +

βρ + βT
γgas

h2

r2 sin2 θ

)
cS =

h

r sin θ
vϕ p =

1

γgas
c2

Sρ

We always choose yas = 0, a = h
R . Also, I infer

ρmin = 1.0× 10−23 g cm−3(6H cm−3), Currently freezing in region
with lower density initially.
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Current initial conditions
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Boundary conditions

r

Beginning: Outflow no inflow, End Outflow no inflow

Zero gradient in vθ

vϕ: Modified Keplerian gradient towards computational
domain

θ

Beginning: Outflow no inflow, End Outflow no inflow

Zero gradient in vr

vϕ: Modified Keplerian gradient towards computational
domain

ϕ

Periodic for end and beginning
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Boundary conditions

Modified Keplerian gradient towards computational
domain(example r):
Loop over all cells of the boundary zone, 2 cells in r extended over
entire θ and ϕ.

v ′ϕ = vϕ

√
routermost

rcurrent
(5)

Limit speed to modified Keplerian speed

v ′′ϕ = Min(v ′ϕ, vK, modified) (6)
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2D test without radiation pressure and self-gravity
deactivated

Start with 2D test, α = 5.0× 10−2, everything apart from
self-gravity activated.
Runs fine up to at least 5× 105 yrs

Fabian Klein Progress of high performance simulations of an accretion disk 13/22



2D test without radiation pressure and self-gravity
deactivated

Initial conditons
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2D test without radiation pressure and self-gravity
deactivated

Initial oscillations
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2D test without radiation pressure and self-gravity
deactivated

Equilibrium
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2D test without radiation pressure and self-gravity
deactivated

Radiation pressure dominates
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2D test without radiation pressure and self-gravity
deactivated

Radiation pressure dominates
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2D test without radiation pressure and self-gravity
deactivated

Greater than potential energy
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2D test without radiation pressure and self-gravity
deactivated

Temperature unchanged
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2D test without radiation pressure and self-gravity
deactivated

Shock in low density area
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Problem: Too high radiation pressure causes explosion

Explosion from much higher pressure in system
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Idea: Reduce initial pressure by factor of 3

Results in thinner disk
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Idea: Reduce initial pressure by factor of 3

Somewhat better, but still direct crash
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Determination of critical temperature

Assume density profile and ideal eos, calculate Temperature

p = ρ
kBT

µmH
(7)

β =
pgas

prad
= ρ

kBT

µmH

3

aradT 4
(8)

Tcrit =
3

√
1

β
ρ

3kB

µmHarad
(9)
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Determination of critical temperature
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Radiation pressure equilibrium

∂prad

∂r
= −ρGM

r2
(7)

4aradT
3∂T

∂r
= −ρGM

r2
(8)

T (r) =
4

√
aradc1r + ρGM

aradr
(9)

c1 =
aradT

4
0 r0 − GMρ(r0, θ)

aradr0
(10)

Assume c1 = 0.0, Trying to get it via boundary, some negative
values
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Radiation pressure equilibrium

with c1 = 0
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Radiation pressure equilibrium

with c1 chosen such that T (0.11 pc) = 1.0× 106 K
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Current situation/problems

Disk goes to equilibrium, stable for long periods of time

Radiation pressure very high, theoretically cannot be ignored.

Causes explosion, no equilibrium any more

Self-Gravity needs to be tested
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Benchmarks I

Strong scaling OK, problem with weak scaling
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Further goals

Slowly progress to 3D simulation

Do some benchmarks

Extend to region where self-gravity is important

Introduce heating due to star-crossings and interactions

Determine spectra from radiation transport results

Far goal: Include Hydrodynamical simulation in N-Body
simulation

Fabian Klein Progress of high performance simulations of an accretion disk 20/22



Thank you for your attention!
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