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Issue: self consistent evolution 
of accretion disk and stellar cluster around SMBH

Md = 0.01
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Progress in code development

• 29 Jan - 12 Feb

• Cartesian code 
• Initial equilibrium state
• Cylindrical code

• Noninertial rest frame 
• Complete artificial viscosity  
• BH subgrid accretion model
• Single node gravity solver

• 31 Aug - 10 Sept

• 29 Sept - 07 Oct • Equilibrium state evolution

• now (28-31 May)
• Improved cylindrical hydro mesh

• MPI tree code with AVX 
instructions

• SS73 alpha viscosity



GAS DYNAMICS
System of conservation laws



GAS DYNAMICS - TVD
System of conservation laws
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solution of the

Riemann 
problem

HLLC solver

All types of solutions
(shock, contact discontinuity, ...)

No artificial viscosity



Initial conditions
as the surface density constant and thus we have for the density:
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The integration over the whole domain thus becomes:
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For Rbeg = 0 and Rend = Rd we get
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In order to also include the limited z range we want to integrate the following expression
numerically:
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This gives (6.811 22 ± 0.000 07) ⇥ 10�4 ^
= (8.514 03 ± 9.000 00) ⇥ 105 M� for the para-

meters as stated above. As we do not incorporate the full Range in R and z some
mass is missing. Primarily, the missing R part must be mentioned here as much mass
is present here. We have not incorporated it as self-gravity is not yet part of the
simulation.
Add self-gravity

In the numerical simulation I get get 6.8 ⇥ 10�4 as the mass in the initial condition.
This is consistent with the result of the numerical integration.

3.1.2. Derivation of makeshift pressure profile

We are using a stationary version of equation 11, which also incorporates the purely
rotating disk, in order to derive a first approximate pressure profile inducing force

6

Novikov&Thorne (1973)

Temperature is a function of cylindrical radius

h(R) = hz R/RsgDisk thickness

Kennedy+ 2016
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ine �2. Apart from choosing µmol a numerical value for T is required.

E.1.2. Radial Force balance calculations

Here, I want to use the radial Force balance. We use a stationary version of 9 and
again use that we have a purely rotating disk.
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E.1.3. Calculation with previously derived makeshift p and StarDIsk Rho

We get
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In a precalculation we determine
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Radial force balance ->  keplerian rotation

Just+ 2012



Hydro mesh geometry
Cartesian Cylindrical
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Hydro mesh geometry
Improved Cylindrical
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Disk center



Hydro cell centers (i,j,k)
Disk center
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Hydro cell centers (i,j,k)

Hydro cell boundaries 
 (i+1/2, i-1/2 ,j+1/2, j-1/2,k)

Each cell within boundaries  
contains homogeneous mass  

& velocity distributions

BH

A part of mass within 
the BH radius 

is assumed to be 
accreted 

Disk center



Viscosity in polar coordinates

+ Eq. of energy

where the viscous dissipation rate F is

F = 2µ
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The foregoing equations (16), (17), and (18) represent the continuity, Navier–Stokes, and energy
respectively.

IV Equations in cylindrical coordinates

• Compressible flow:
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Simplified viscosity

In the case of a thin accretion flow τrφ component is 
the dominant contributor to the viscous stress 
(SS73): τrφ = - αp



No self-gravity Model. Parameters

Hydro integration time step ~100 days

MBH = 1.5 109 Msun

Full integration time 12 hours

Evolution up to 0.5 Myr

Viscosity 0.005

4 nodes on Kepler

Hydro mesh 128x128x129



Density 
Movie



Density 
Movie



Radial velocity 
Maps



(Self) gravity
Plummer  
sphere

Accretion 
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(Self) gravity
Plummer  
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Accretion 
disk



Plummer  
sphere

Acceleration 
for hydro cells 
and particles



MPI version. Performance test
example: 

N-body 
galaxy simulation 

8 nodes - 64 cores 

OCCIGEN 

15 106 particles 

~7 days for 5 Gyr 







Hydro integration time step ~100 days

MBH = 1.5 108 Msun

Full integration time 28 hours

Evolution up to 0.5 Myr

Viscosity 0.005

Hydro mesh 128x128x129

Self-gravity Model. Parameters

Plummer sphere, N = 105 particles

4 nodes on Kepler



AD with  
self-gravity  
and stellar  
dynamics



AD with  
self-gravity  
and stellar  
dynamics







Mass accretion rate
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Future steps
• GPU parallelization

Results. Current state
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