

AGN disks

Khoperskov Sergey^{1,2}

+ ARI-MAO-INASAN collaboration

¹GEPI, Observatoire de Paris, Meudon, France ²INASAN, Moscow, Russia

• 31 Aug - 10 Sept

· 29 Sept - 07 Oct

· 29 Jan - 12 Feb

- 31 Aug 10 Sept
- Cartesian code
- Initial equilibrium state

· 29 Sept - 07 Oct

· 29 Jan - 12 Feb

- 31 Aug 10 Sept
- Cartesian code
- Initial equilibrium state
- Cylindrical code
- · 29 Sept 07 Oct

· 29 Jan - 12 Feb

- 31 Aug 10 Sept
- Cartesian code
- Initial equilibrium state
- Cylindrical code
- · 29 Sept 07 Oct
- Equilibrium state evolution

· 29 Jan - 12 Feb

· 31 Aug - 10 Sept

· 29 Sept - 07 Oct

- Cartesian code
- Initial equilibrium state
- Cylindrical code
- Equilibrium state evolution
- Noninertial rest frame
- Complete artificial viscosity
- BH subgrid accretion model

· 29 Jan - 12 Feb

· 31 Aug - 10 Sept

· 29 Sept - 07 Oct

· 29 Jan - 12 Feb

- Cartesian code
- Initial equilibrium state
- Cylindrical code
- Equilibrium state evolution
- Noninertial rest frame
- Complete artificial viscosity
- BH subgrid accretion model
- Single node gravity solver

· 31 Aug - 10 Sept

· 29 Sept - 07 Oct

· 29 Jan - 12 Feb

- Cartesian code
- Initial equilibrium state
- Cylindrical code
- Equilibrium state evolution
- Noninertial rest frame
- Complete artificial viscosity
- BH subgrid accretion model
- Single node gravity solver
- SS73 alpha viscosity

· 31 Aug - 10 Sept

· 29 Sept - 07 Oct

· 29 Jan - 12 Feb

- Cartesian code
- Initial equilibrium state
- Cylindrical code
- Equilibrium state evolution
- Noninertial rest frame
- Complete artificial viscosity
- BH subgrid accretion model
- Single node gravity solver
- SS73 alpha viscosity
- MPI tree code with AVX instructions
- now (28-31 May)

· 31 Aug - 10 Sept

· 29 Sept - 07 Oct

· 29 Jan - 12 Feb

- Cartesian code
- Initial equilibrium state
- Cylindrical code
- Equilibrium state evolution
- Noninertial rest frame
- Complete artificial viscosity
- BH subgrid accretion model
- Single node gravity solver
- SS73 alpha viscosity
- MPI tree code with AVX instructions
- Improved cylindrical hydro mesh
- now (28-31 May)

GAS DYNAMICS

System of conservation laws

$$\begin{aligned} \frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial H}{\partial z} &= 0, \\ U &= \begin{bmatrix} \rho \\ M_x \\ M_y \\ M_z \\ M_z \\ B_z \\ B_x \\ B_y \\ B_z \end{bmatrix} \mathbf{F} = \begin{bmatrix} \rho v_x \\ \rho v_x v_z - B_x B_z \\ \rho v_x v_z - B_x B_z \\ \rho v_x v_z - B_x B_z \\ (E + P^*) v_x - (\mathbf{B} \cdot \mathbf{v}) B_x \\ 0 \\ B_y v_x - B_x v_y \\ B_z v_x - B_x v_z \end{bmatrix} \end{aligned}$$

GAS DYNAMICS - TVD $TV = \sum_{j} |u_{j+1} - u_{j}|.$ top of concernation laws $TV(u^{n+1}) < TV(u^{n})$

System of conservation laws

อบ

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial H}{\partial z} = 0,$$

$$U = \begin{bmatrix} \rho \\ M_x \\ M_y \\ M_z \\ E \\ B_x \\ B_y \\ B_z \end{bmatrix} \quad F = \begin{bmatrix} \rho v_x \\ \rho v_x v_x - B_x B_z^2 \\ \rho v_x v_y - B_x B_y \\ \rho v_x v_z - B_x B_z \\ (E + P^*) v_x - (B \cdot v) B_x \\ 0 \\ B_y v_x - B_x v_y \\ B_z v_x - B_x v_z \end{bmatrix}$$

ac

au

ar

All types of solutions (shock, contact discontinuity, ... No artificial viscosity

Initial conditions

$$\rho(R,z) = \sigma_0 \frac{1}{h(R)} \left(\frac{R}{R_{\rm d}}\right)^{-p} \exp\left(-\frac{z^2}{h(R)^2}\right)$$

Novikov&Thorne (1973)

Temperature is a function of cylindrical radius

Disk thickness $h(R) = h_z R/R_{sg}$

Radial force balance -> keplerian rotation

$$\frac{\partial p}{\partial R} = \rho \mathbf{g}_R + \rho \frac{v_\varphi^2}{R}$$

Just+ 2012 Kennedy+ 2016

Hydro mesh geometry

Improved Cylindrical

Hydro cell centers (i,j,k)

Hydro cell centers (i,j,k)

Hydro cell boundaries (i+1/2, i-1/2, j+1/2, j-1/2,k)

Hydro cell centers (i,j,k)

Hydro cell boundaries (i+1/2, i-1/2, j+1/2, j-1/2,k) Each cell within boundaries contains homogeneous mass & velocity distributions

BH

A part of mass within the BH radius is assumed to be accreted

Hydro cell boundaries (i+1/2, i-1/2, j+1/2, j-1/2,k)

Hydro cell centers (i,j,k)

Each cell within boundaries contains homogeneous mass & velocity distributions

Viscosity in polar coordinates

$$\begin{split} \rho \left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_r}{\partial \theta} + u_z \frac{\partial u_r}{\partial z} - \frac{u_{\theta}^2}{r} \right) &= \rho g_r - \frac{\partial p}{\partial r} \\ &+ \frac{\partial}{\partial r} \left[\mu \left(-\frac{2}{3} \nabla \cdot \overline{\nabla} + 2 \frac{\partial u_r}{\partial r} \right) \right] + \frac{1}{r} \frac{\partial}{\partial \theta} \left[\mu \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} \right) \right] \\ &+ \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right) \right] + \frac{2\mu}{r} \left(\frac{\partial u_r}{\partial r} - \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} - \frac{u_r}{r} \right) \\ \rho \left(\frac{\partial u_{\theta}}{\partial t} + u_r \frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{\partial \theta} \frac{\partial u_{\theta}}{\partial \theta} + u_z \frac{\partial u_{\theta}}{\partial z} + \frac{u_r u_{\theta}}{r} \right) = \rho g_{\theta} - \frac{1}{r} \frac{\partial p}{\partial \theta} \\ &+ \frac{1}{r} \frac{\partial}{\partial \theta} \left[\mu \left(-\frac{2}{3} \nabla \cdot \overline{\nabla} + \frac{2}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{2u_r}{r} \right) \right] + \frac{\partial}{\partial z} \left[\mu \left(\frac{\partial u_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta} \right) \right] \\ &+ \frac{\partial}{\partial r} \left[\mu \left(\frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r} + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \right) \right] + \frac{2\mu}{r} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r} \right) \\ \rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\theta}}{\partial \theta} \frac{\partial u_z}{u_z} + u_z \frac{\partial u_z}{\partial z} \right) = \rho g_z - \frac{\partial p}{\partial z} \\ &+ \frac{\partial}{\partial z} \left[\mu \left(-\frac{2}{3} \nabla \cdot \overline{\nabla} + 2 \frac{\partial u_z}{\partial z} \right) \right] + \frac{\partial}{\partial r} \left[\mu \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_z}{\partial z} \right) \right] \\ &+ \frac{1}{r} \frac{\partial}{\partial \theta} \left[\mu \left(\frac{1}{r} \frac{\partial u_z}{\partial \theta} + \frac{\partial u_{\theta}}{\partial z} \right) \right] + \frac{\mu}{r} \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial z} \right) \\ &+ Eq. \text{ of energy} \end{split}$$

Simplified viscosity

$$\begin{split} \rho \left[\frac{\partial v_{\phi}}{\partial t} + v_r \frac{\partial v_{\phi}}{\partial r} + v_z \frac{\partial v_{\phi}}{\partial z} \right] \\ &= -\frac{v_{\phi} v_r}{r} + \mu \left[\frac{\partial^2 v_{\phi}}{\partial r^2} + \frac{1}{r} \frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r^2} + \frac{\partial^2 v_{\phi}}{\partial z^2} \right]. \\ \mu \left[\frac{\partial^2 v_{\phi}}{\partial r^2} + \frac{1}{r} \frac{\partial v_{\phi}}{\partial r} - \frac{v_{\phi}}{r^2} \right] = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{r\phi}), \end{split}$$

In the case of a thin accretion flow $\tau_{r\phi}$ component is the dominant contributor to the viscous stress (SS73): $\tau_{r\phi} = -\alpha p$

No self-gravity Model. Parameters

- $M_{BH} = 1.5 \ 10^9 \, M_{sun}$
- Evolution up to 0.5 Myr
- Viscosity 0.005
- Hydro mesh 128x128x129

- Hydro integration time step ~100 days
- 4 nodes on Kepler
- Full integration time 12 hours

Density Movie

Density Movie

Radial velocity Maps

(Self) gravity

(Self) gravity

(Self) gravity

Plummer sphere

Acceleration for hydro cells and particles

MPI version. Performance test

example: N-body galaxy simulation

8 nodes - 64 cores

OCCIGEN 15 10⁶ particles

~7 days for 5 Gyr

Comparison "old" Treecode (Semelin & Combes 2002) with Sergey's Treecode

Simulation with 30M particles

Radíal velocity dispersion map

Old

New

Comparison "old" Treecode (Semelin & Combes 2002) with Sergey's Treecode Simulation with 30M particles

Ratio vertical to radial velocity dispersion map

Old

New

Self-gravity Model. Parameters

- $M_{BH} = 1.5 \ 10^8 \, M_{sun}$
- Evolution up to 0.5 Myr
- Viscosity 0.005
- Hydro mesh 128x128x129 Plummer sphere, $N = 10^5$ particles

- Hydro integration time step ~100 days
- 4 nodes on Kepler
- Full integration time 28 hours

AD with self-gravity and stellar dynamics

AD with self-gravity and stellar dynamics

Mass accretion rate

• Stable AD (~10⁶ yr) with α -viscosity and BH accretion

• Stable AD (~10⁶ yr) with α -viscosity and BH accretion

 Tree Code based (self) gravity calculation and stellar particles dynamics

• Stable AD (~10⁶ yr) with α -viscosity and BH accretion

 Tree Code based (self) gravity calculation and stellar particles dynamics

• MPI parallelization

• Stable AD (~10⁶ yr) with α -viscosity and BH accretion

 Tree Code based (self) gravity calculation and stellar particles dynamics

• MPI parallelization

Future steps

• Stable AD (~10⁶ yr) with α -viscosity and BH accretion

 Tree Code based (self) gravity calculation and stellar particles dynamics

• MPI parallelization

Future steps

• Implementation of drag forces between AD and stars

• Stable AD (~10⁶ yr) with α -viscosity and BH accretion

- Tree Code based (self) gravity calculation and stellar particles dynamics
- MPI parallelization

Future steps

- Implementation of drag forces between AD and stars
- GPU parallelization